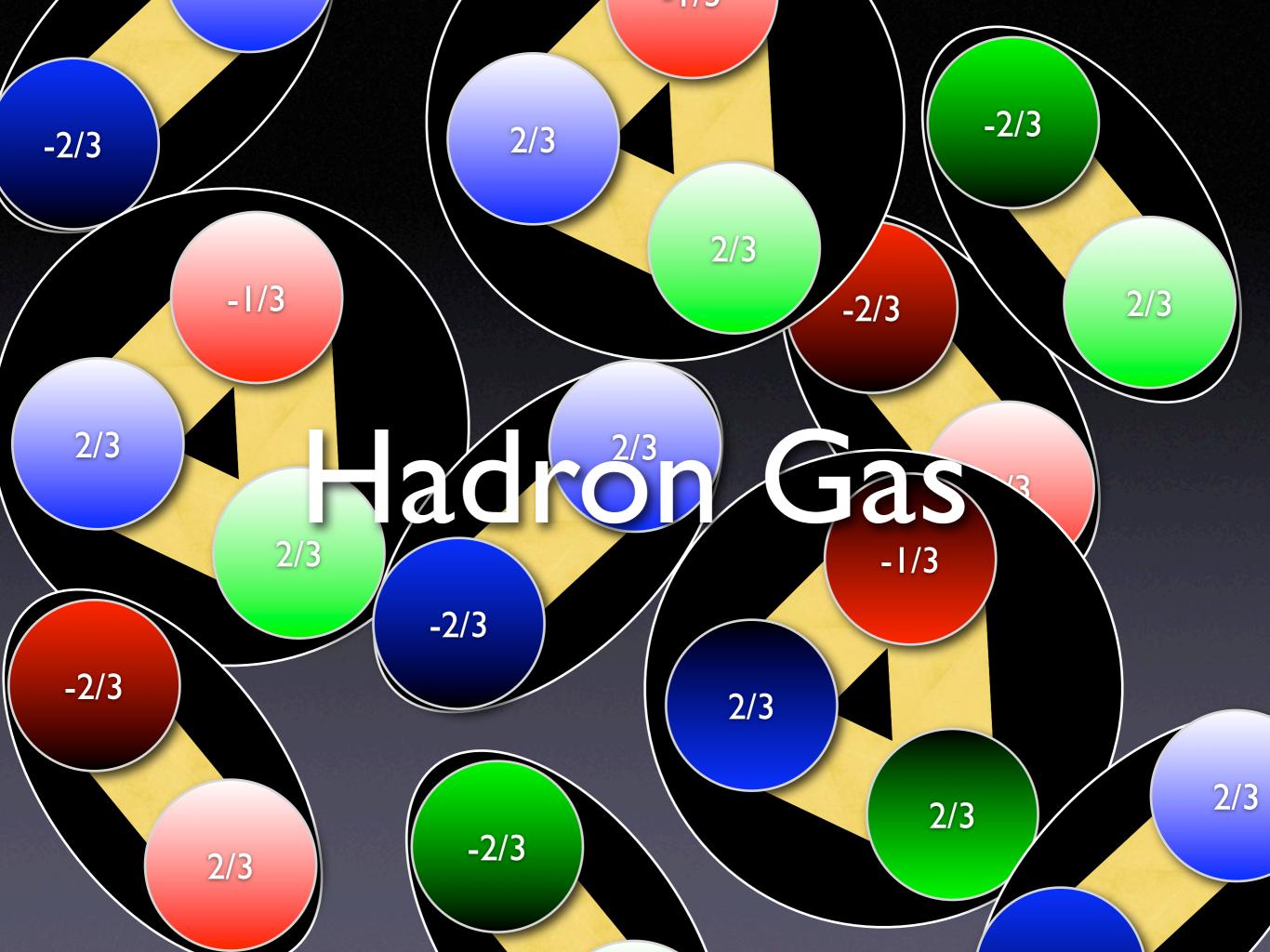
A Hydrodynamic Perspective on RHIC Phenomena

Peter Steinberg
Chemistry Department, BNL
OSU Seminar, 3/7/2006

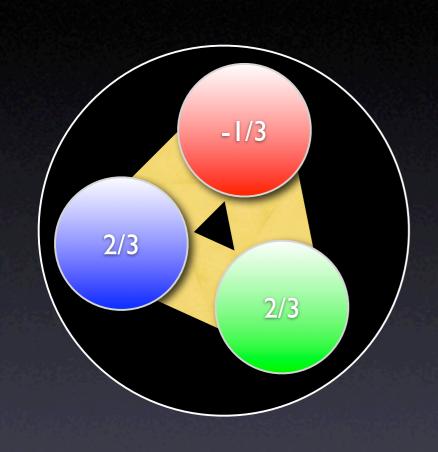
Murray & Me

Born 1929
Yale, JE '48
PhD, MIT '51
Invented quarks

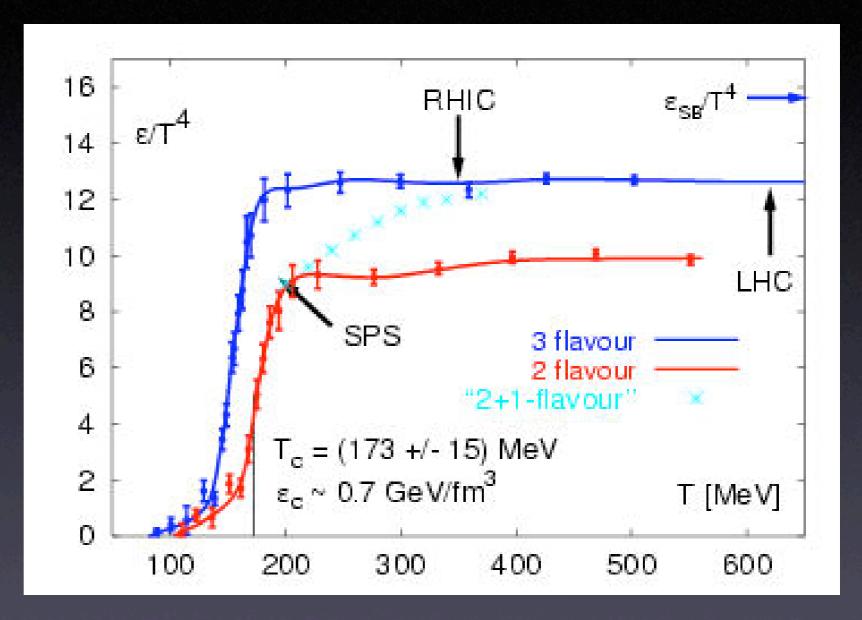
Born 1969
Yale, JE '92
PhD, MIT '98
Studies quarks



Information From Lattice

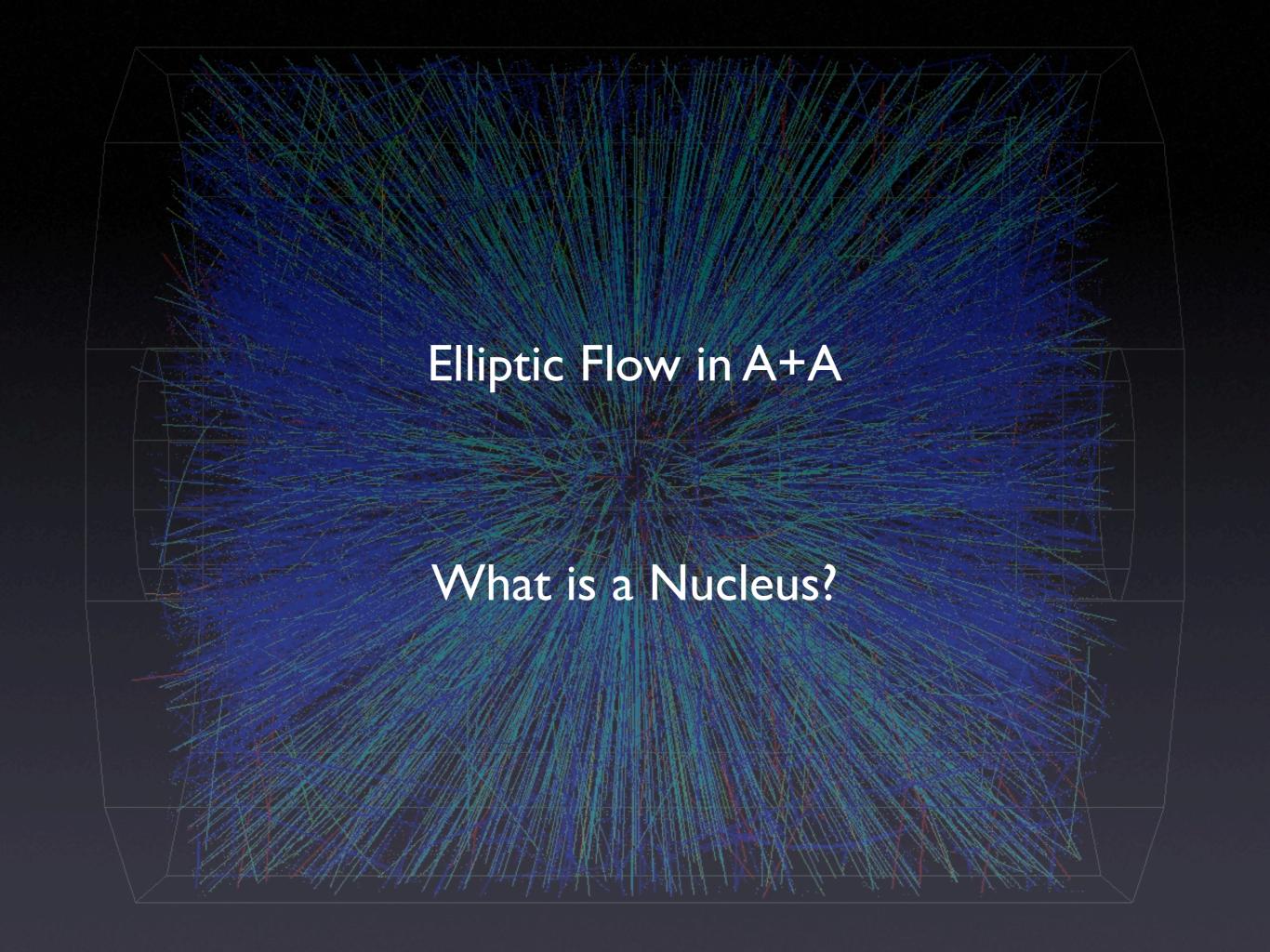


$$\epsilon_P = \frac{M_P}{V} \sim 500 \frac{MeV}{fm^3}$$



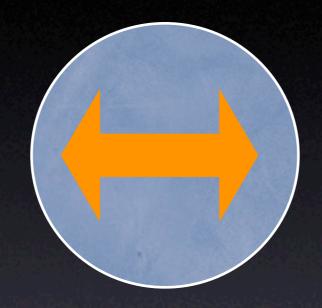
Does the collision of two nuclei make "matter"? How "large" does the system have to be? How rapidly does it occur?

- Elliptic Flow
 - "Participant Eccentricity"
- Longitudinal Flow
 - Surprises in Landau Hydrodynamics
- Is there thermalization in elementary reactions?
 - A+A vs. e+e- revisited: role of baryon density
 - HBT systematics in p+p, d+Au
 - Longitudinal "shifts" in d+Au
- What is the relevant energy density?



What is "Hydrodynamics"?

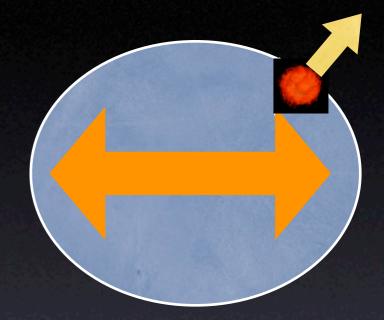
Energy density thermalized in a volume, adjacent cells are in causal contact



Presure gradients
develop via
expansion into
vacuum

$$\partial_{\mu} T^{\mu\nu} = 0$$

$$P = \frac{\epsilon}{3}$$

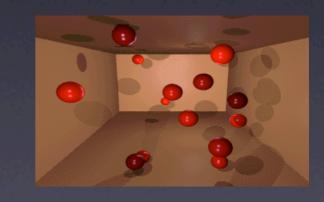


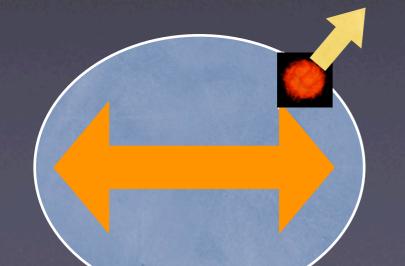
When local temperature falls below some T_c interactions turn off and fluid cells "freeze out" as isotropic fireballs (in fluid rest frame)

Implications

Hydro evolution deals with transport of energy & momentum (and conserved quantum numbers): only EOS carries info on DOFs

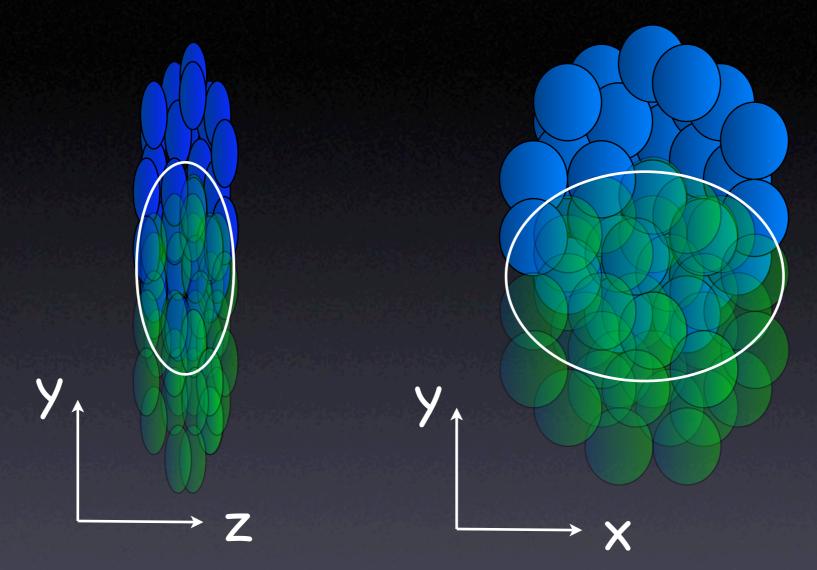
Potentially a mistake to interpret the final state multiplicity as the "N" particles in a box (when a system is too small to show hydro?)





In this picture, the freezeout temperature is a fundamentally <u>local</u> property of the dynamics (i.e. it's not the temperature of <u>the</u> system)

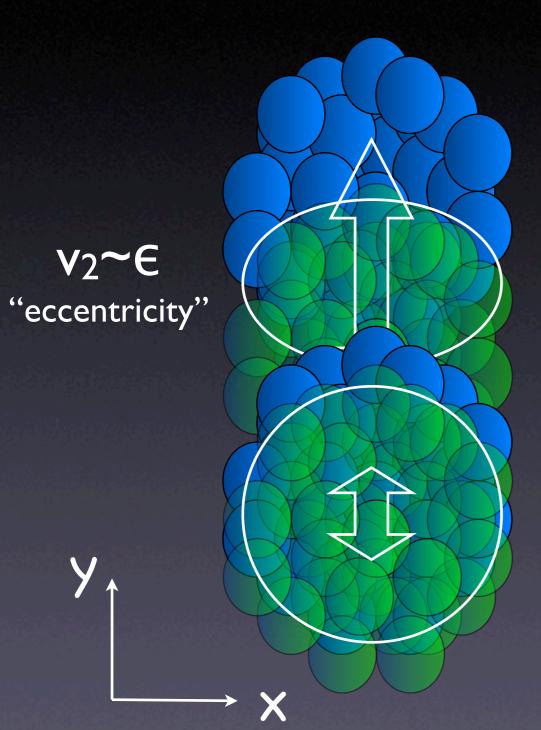
"Shapes" of Things

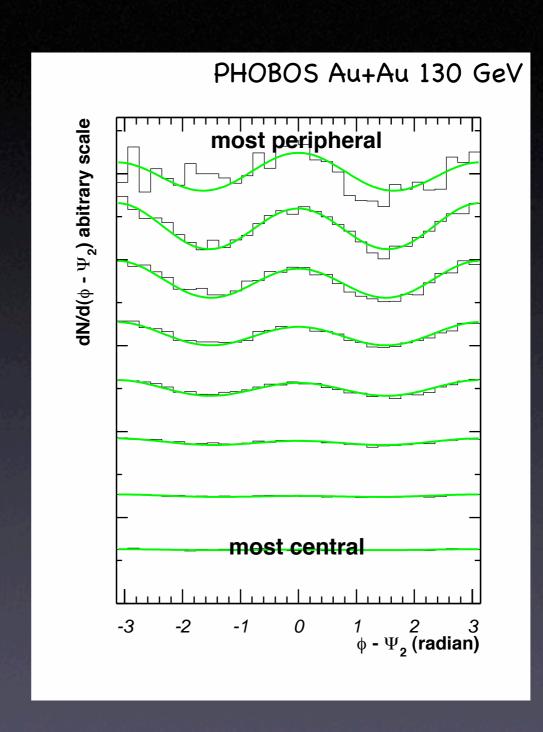


RHIC collisions have a special shape:

- I. Compressed along the beam directions
- 2. Almond shaped in the "transverse" plane

"Elliptic (Transverse) Flow"





Extract "v2"

Modulation in the angle in the transverse direction

What is "eccentricity"?

This section relies on work by: M. Baker/BNL, C. Loizides/MIT, R. Bindel/UMD,

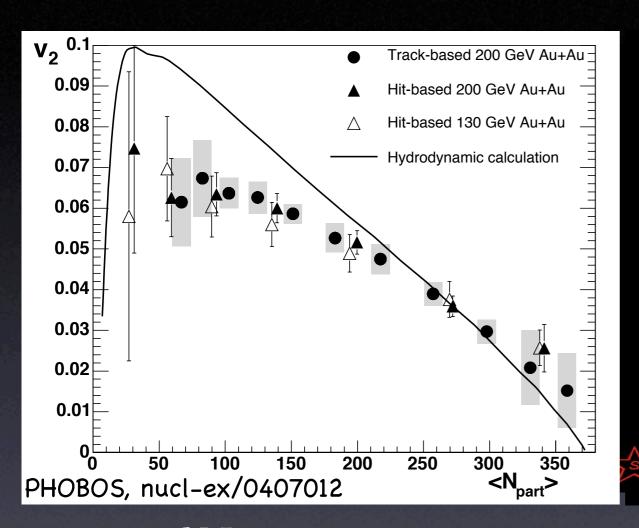
P. Walters/UR

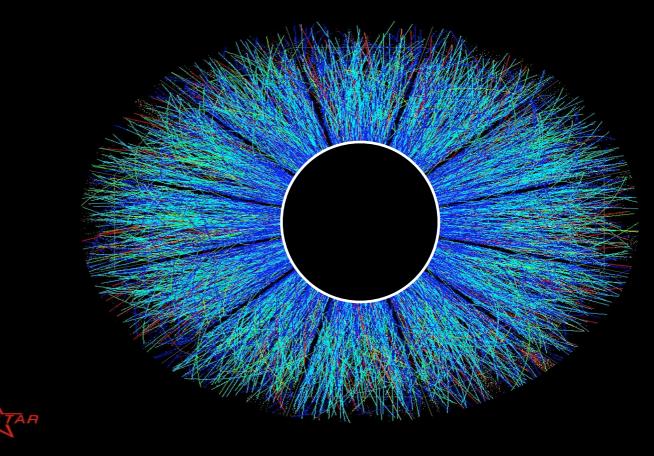
and talks by G. Roland/MIT, S. Manly/UR,

$$\varepsilon = \frac{\sigma_y^2 - \sigma_x^2}{\sigma_y^2 + \sigma_x^2}$$

Eccentricity characterizes elliptic shape of overlap (simple to think about w/ continuous densities, but...)

Agreement with Hydro

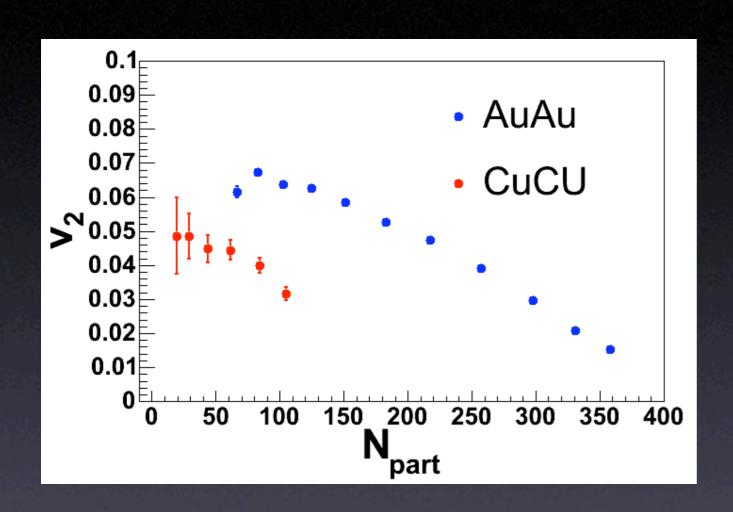


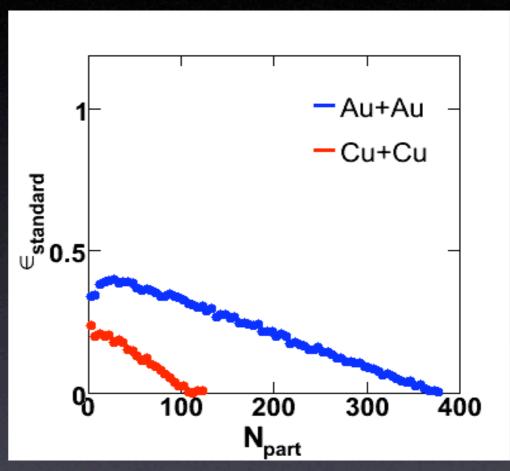


$$\frac{1}{N}\frac{dN}{d\phi} = 1 + 2v_1\cos(\phi - \Phi_R) + 2v_2\cos(2[\phi - \Phi_R]) + \dots$$

Agreement with calculations of asymmetries, based on ideal fluid thermalizing in t~0.6fm/c

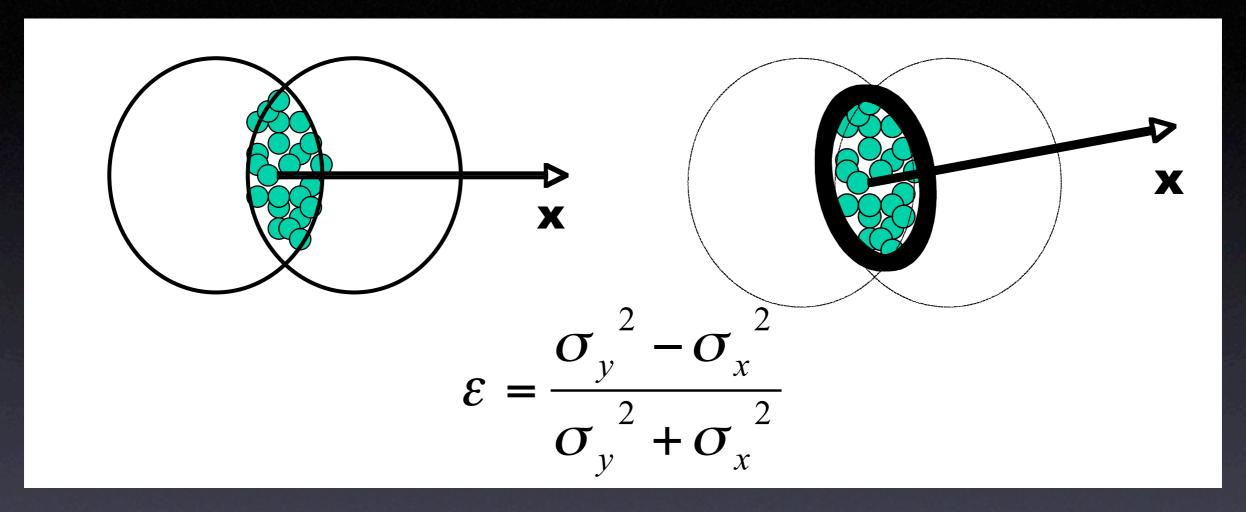
Au+Au vs. Cu+Cu





While Au+Au shows a similar trend in measured v₂ and calculated E, Cu+Cu trends look very different

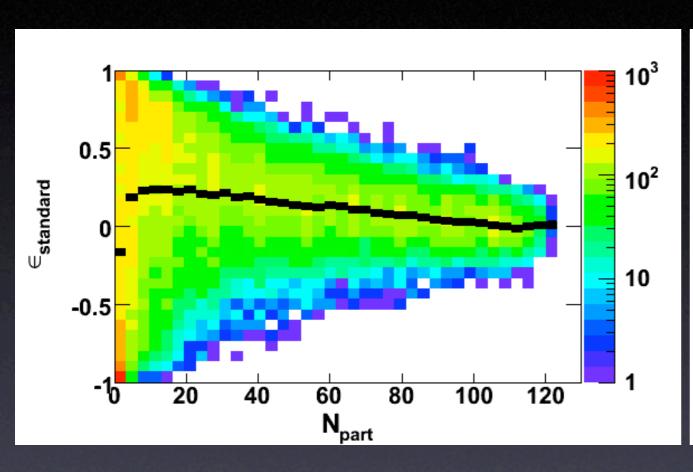
Defining "Eccentricity"

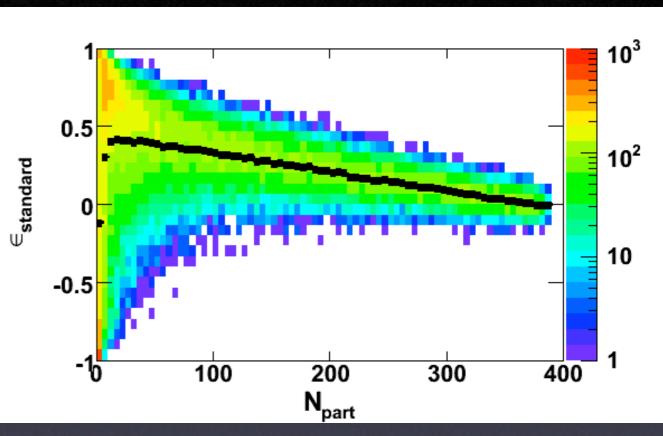


- I. relative to assumed reaction plane.
 - 2. relative to "principal axes"

$$\epsilon_{part} = \frac{\sigma_y'^2 - \sigma_x'^2}{\sigma_y'^2 + \sigma_x'^2} = \frac{\sqrt{(\sigma_y^2 - \sigma_x^2)^2 + 4(\sigma_{xy}^2)^2}}{\sigma_y^2 + \sigma_x^2}$$

Standard Eccentricity

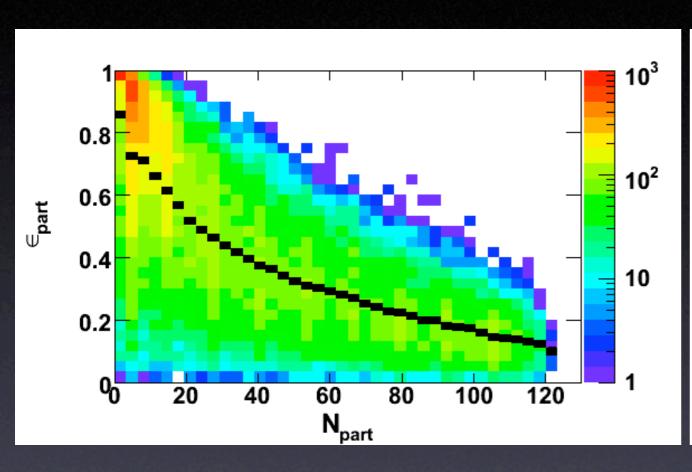


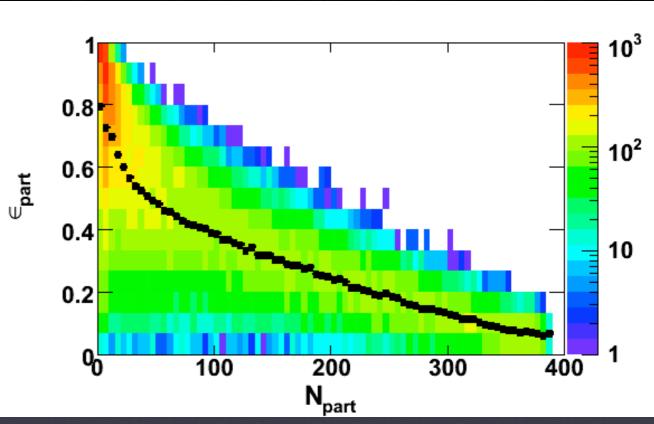


Cu+Cu

Au+Au

"Participant" Eccentricity

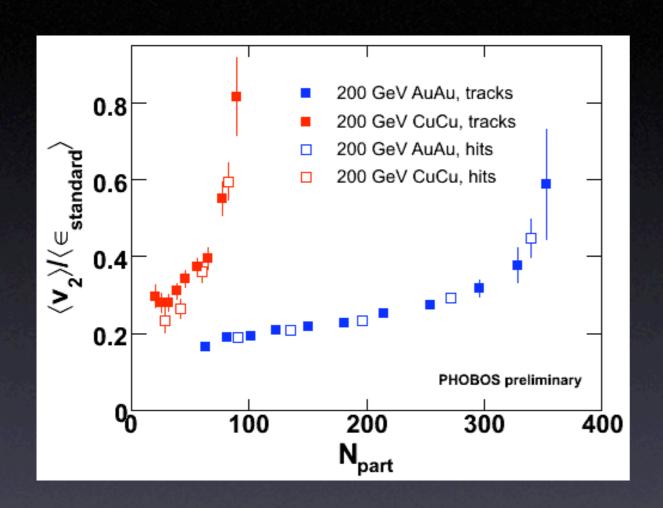


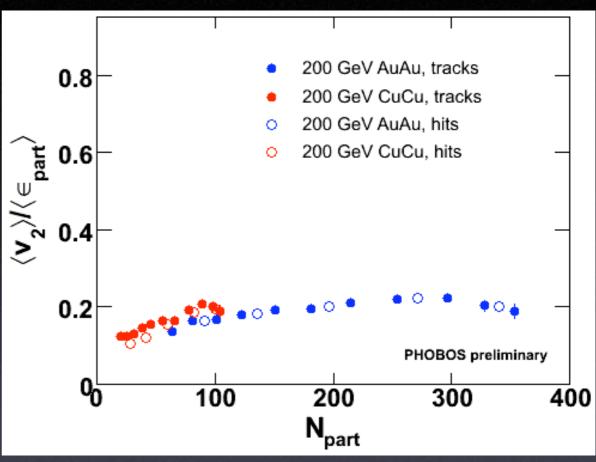


Cu+Cu

Au+Au

Comparing Au & Cu



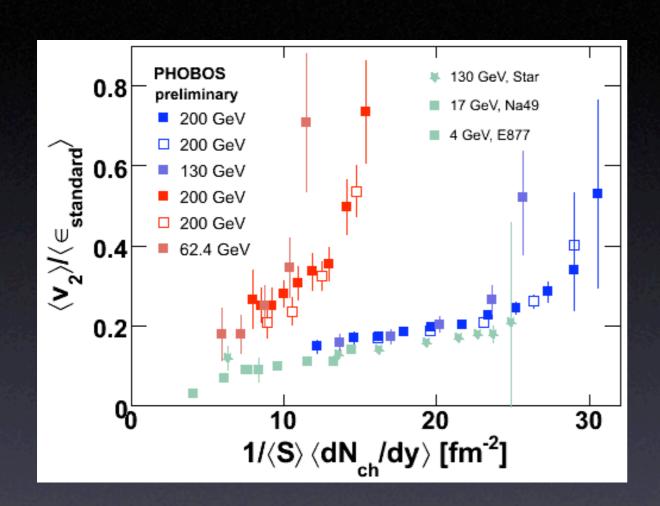


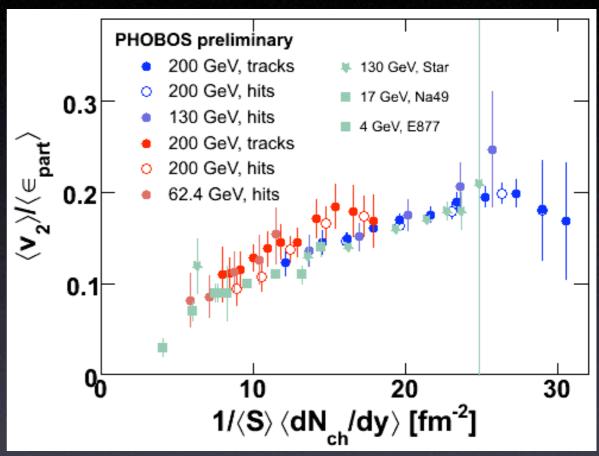
v₂ is expected to scale ~linearly with eccentricity

standard eccentricity doesn't show connection

participant eccentricity both flattens trend vs. Npart and "matches" Au+Au and Cu+Cu

"Voloshin" Plot





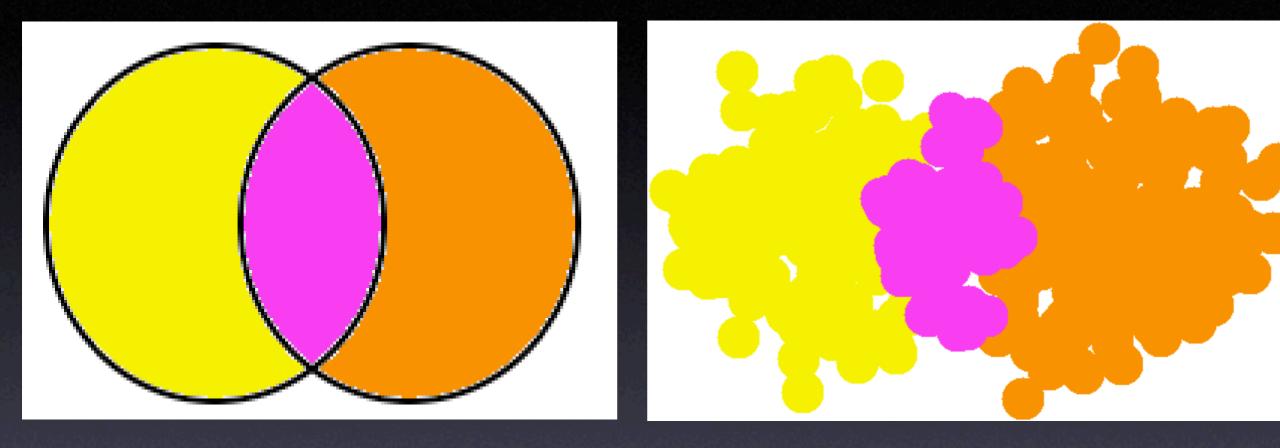
"Low density limit" gives result that

$$\frac{v_2}{\epsilon} \propto \frac{dN/dy}{S}$$

Areal particle density

"matches" only with participant eccentricity

What is a Nucleus?



Smooth matter density?

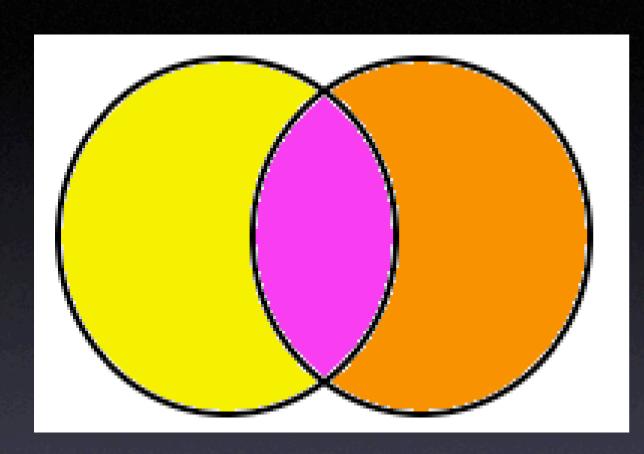
Clumpy bag of nucleons?

Our data seems to prefer the clumpy bag, but many nuclear physicists express strong misgivings

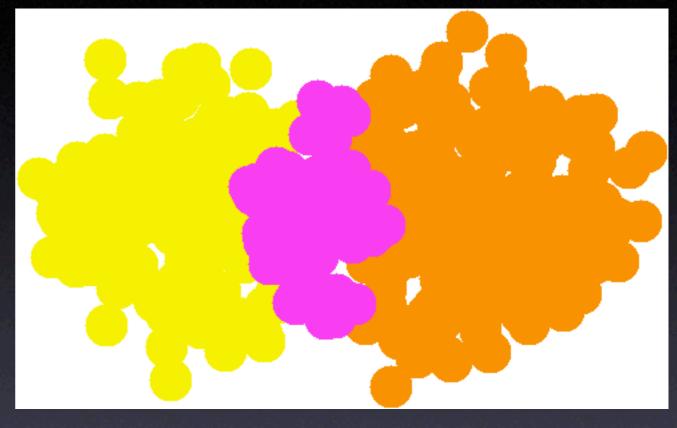
FAQ

- Sensitivity to Glauber parameters
 - varied σ from 30 to 46 mb
- Nucleons in same nucleus can't sit on top of each other
 - introduced inter-nucleon separation d; varied d from 0-2fm
- Centre of gravity fluctuates in Glauber
 - small smearing of b-distribution
- WS parameters come from probing charge distribution
 - check contribution of 'stray' nucleons to eccentricity small effect
- Nuclei "known" to be smooth
 - Aren't we sampling a very short time?
- This Glauber approach violates QM mechanics & known nuclear physics
 - No fermi momentum, no collective oscillations

When is a Nucleus?

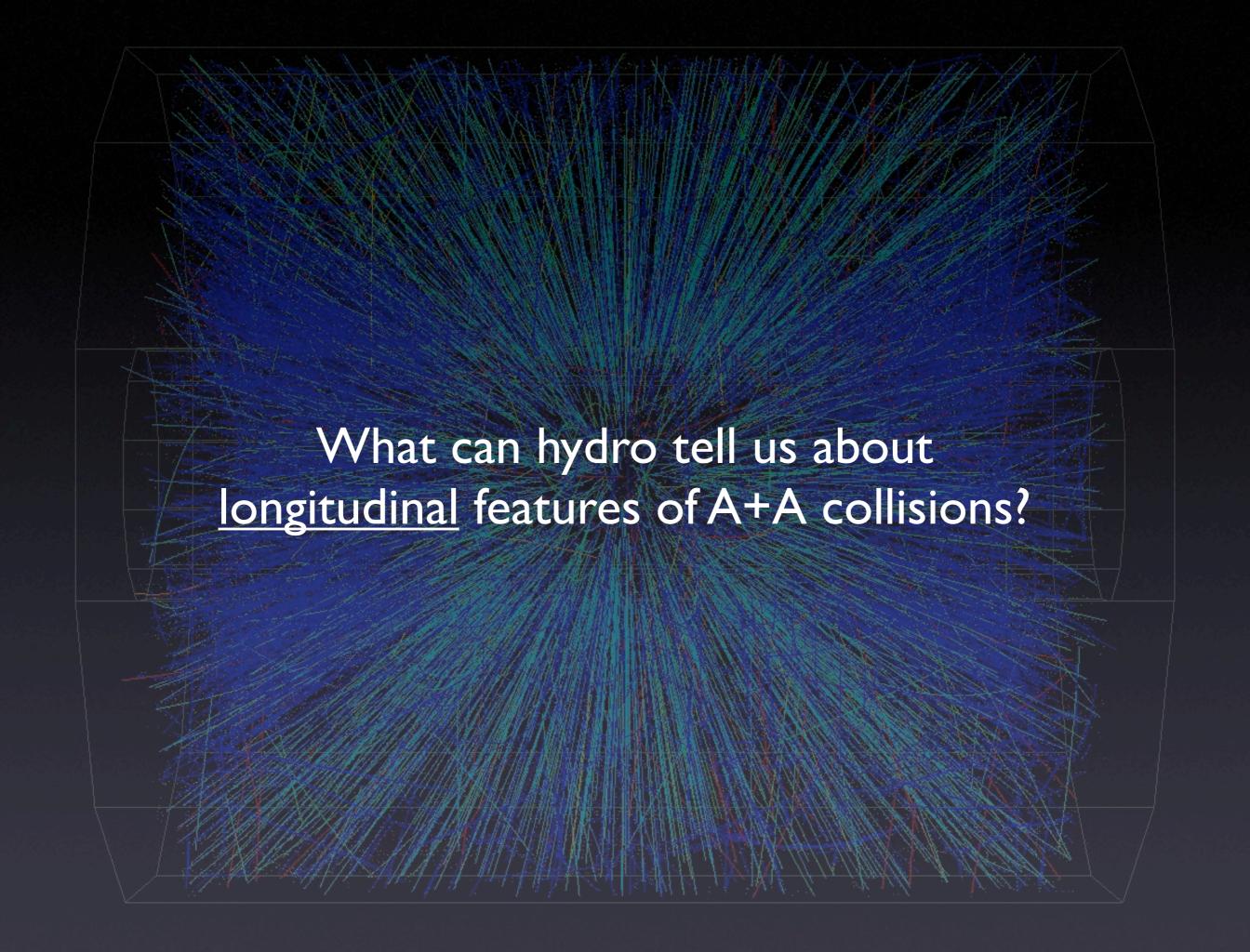


Smooth matter density

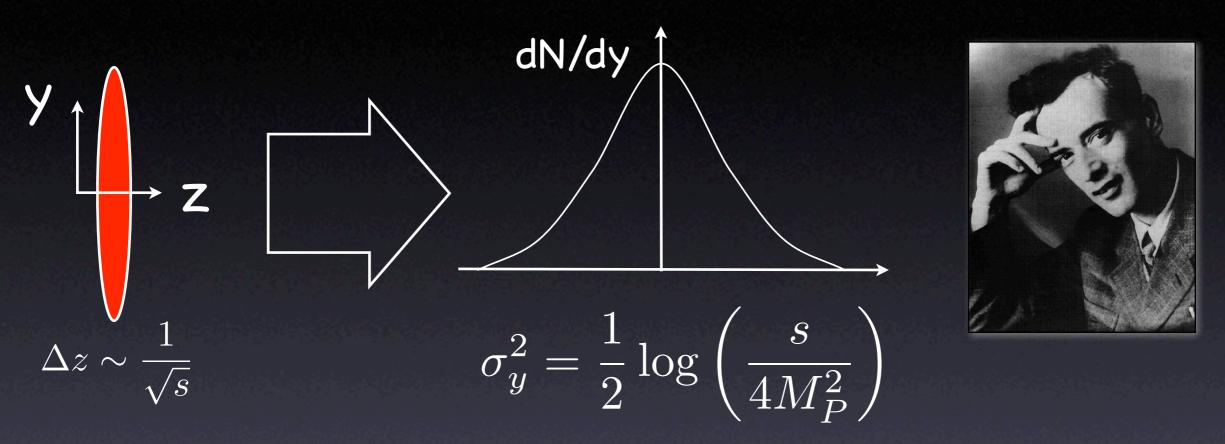


Clumpy bag of nucleons

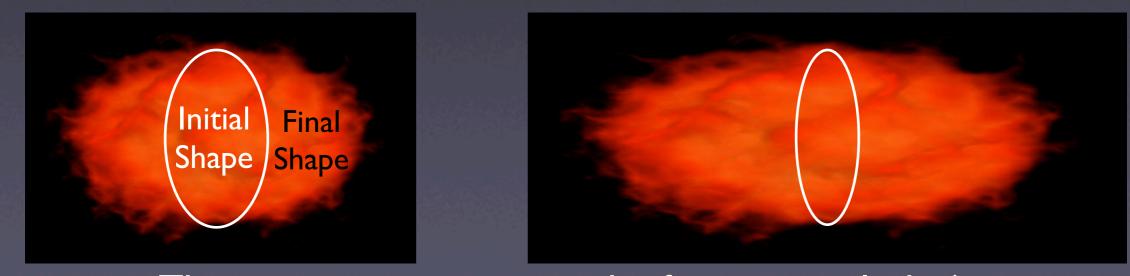
If flow couples to the "clumpy" density, further evidence that it develops <u>extremely</u> early!



Longitudinal Flow

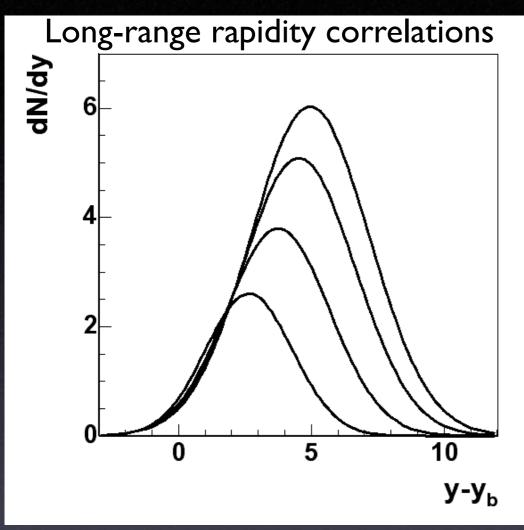


1955: Landau solves "Relativistic Hydrodynamics"

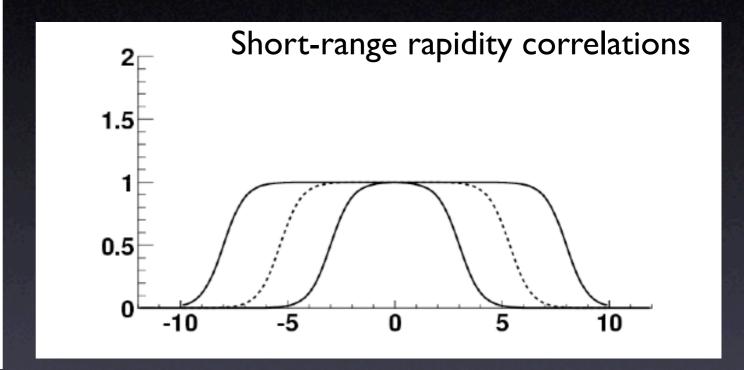


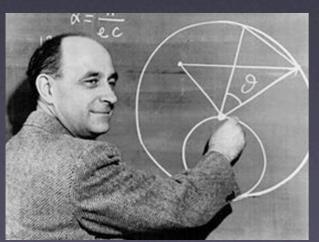
The more you squeeze it, the faster it explodes!

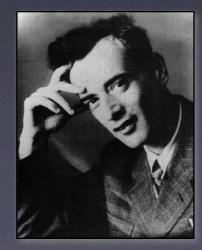
Boost Invariance

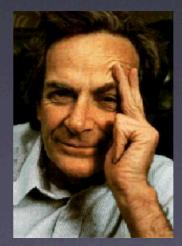


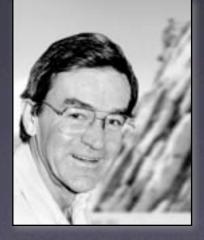
Two very different dynamical scenarios...





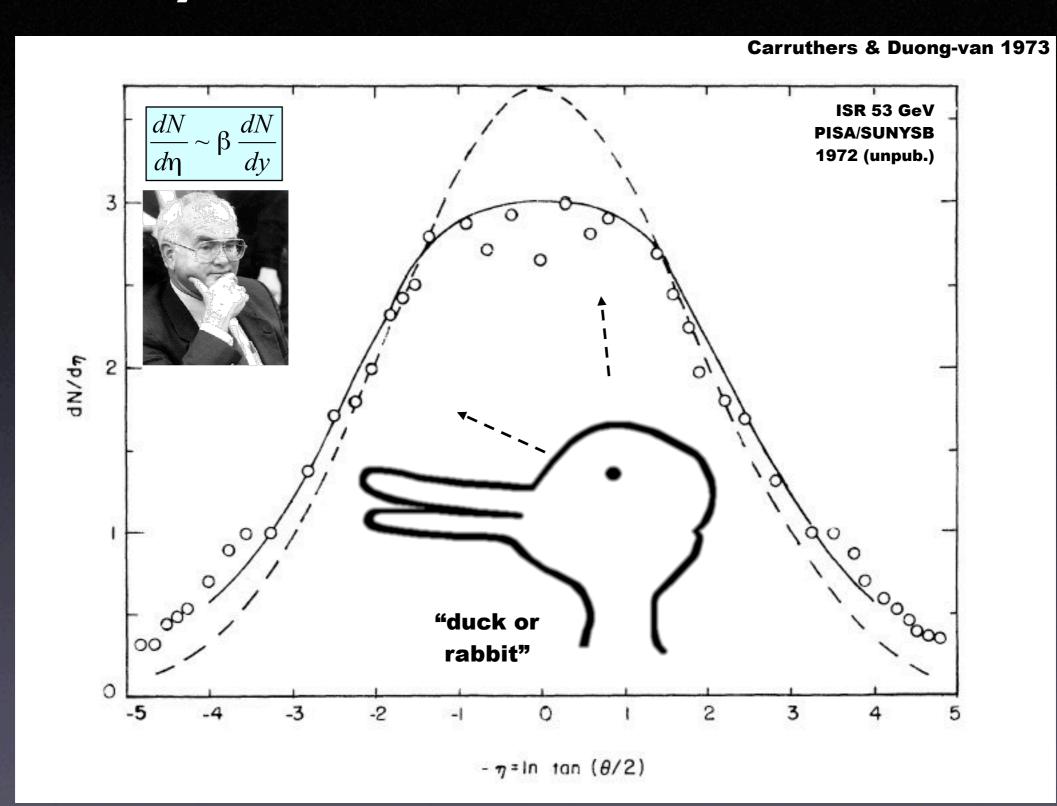


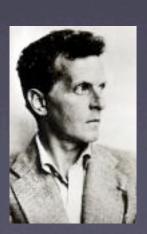




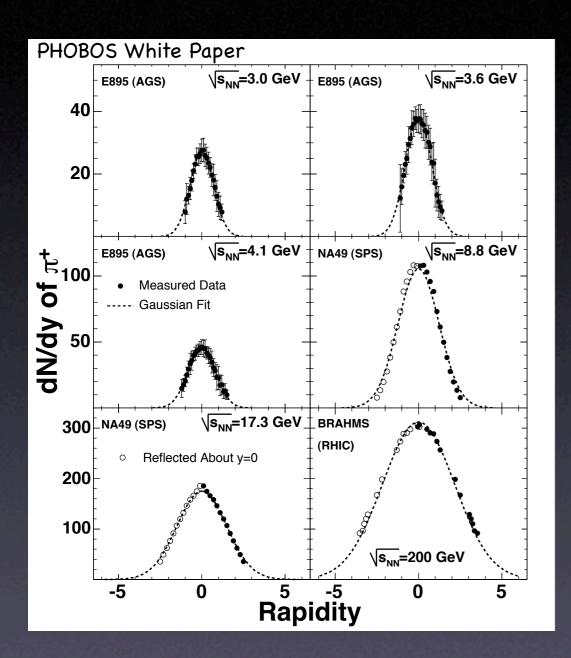
Feynman & Bjorken

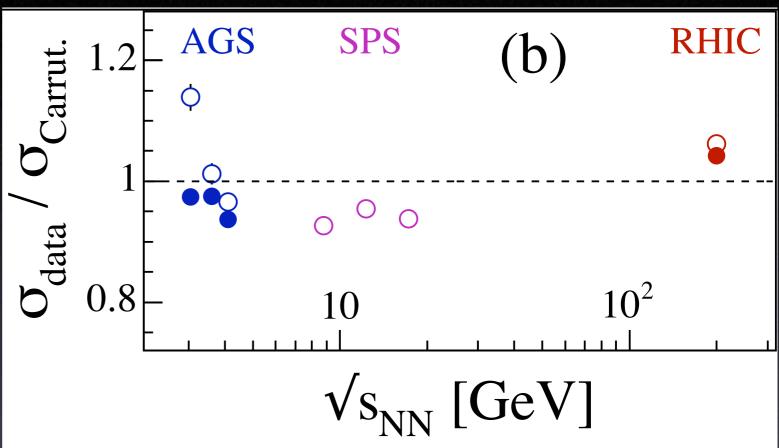
Eye of the Beholder?





Landau Model vs. Data





Landau's predictions from 1955 remain valid in 2005

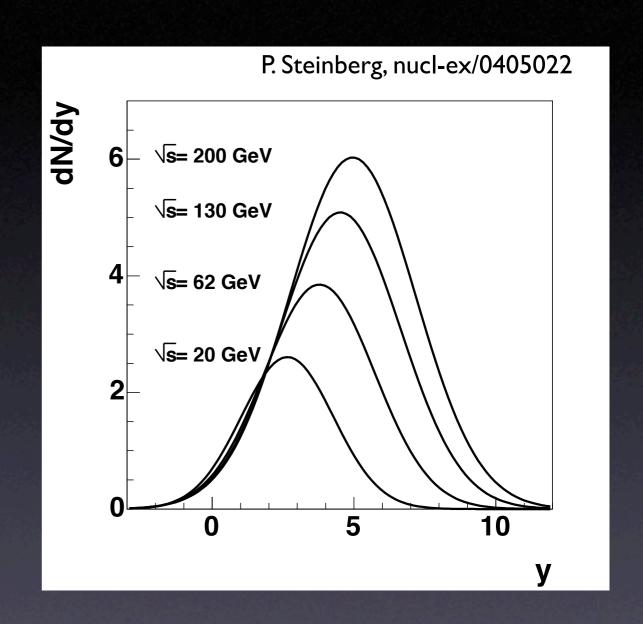
The longitudinal explosion in heavy ion collisions acts like a rapidly-thermalized fluid!

Longitudinal Scaling

$$\frac{dN}{dy} = Ks^{1/4} \frac{1}{\sqrt{2\pi L}} \exp\left(-\frac{y^2}{2L}\right)$$

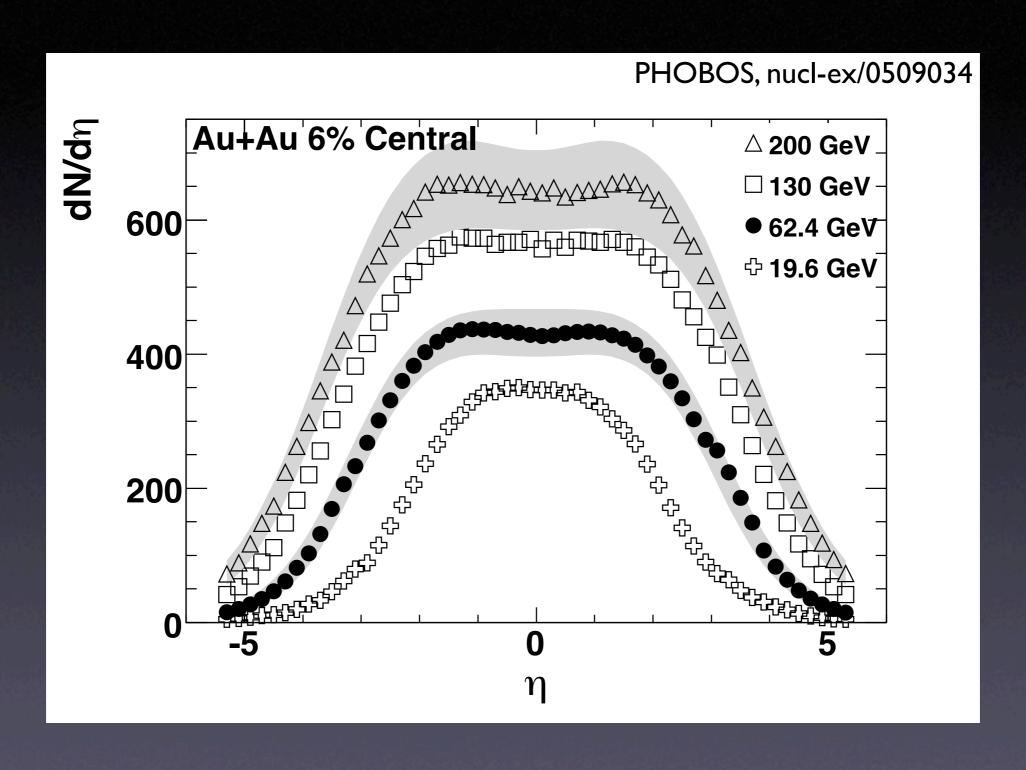
$$y' = y + y_{beam} = y + e^L$$

$$\frac{dN}{dy'} \sim \frac{1}{\sqrt{L}} \exp\left(-\frac{y'^2}{2L} - y'\right)$$

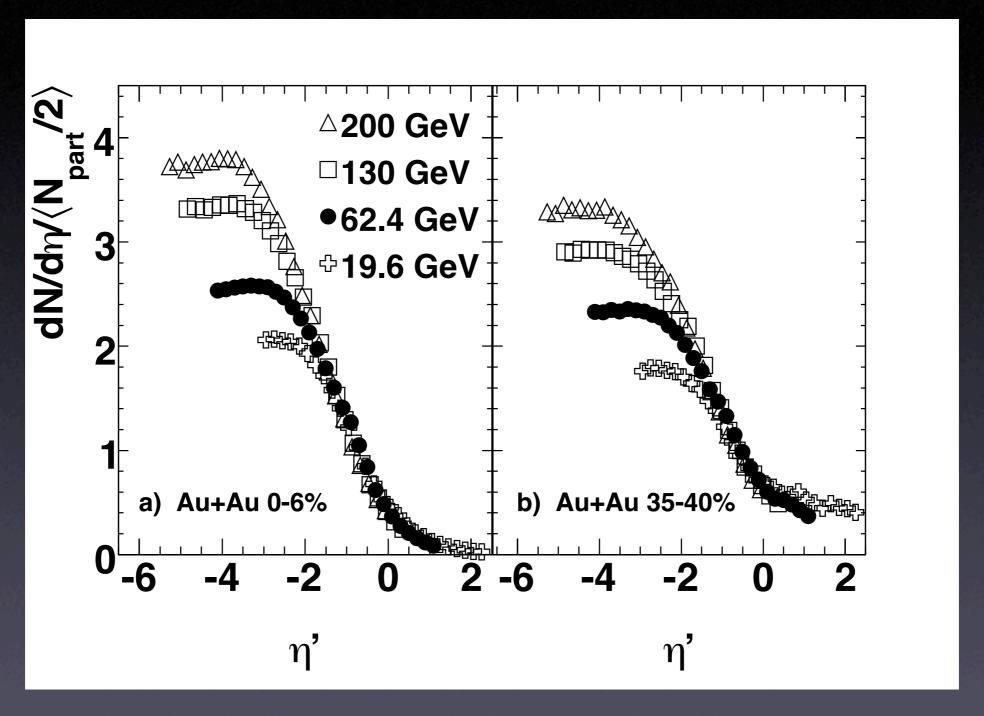


When observed in the rest frame of one of the projectiles ~invariance of particle yields!

4П Particle Densities

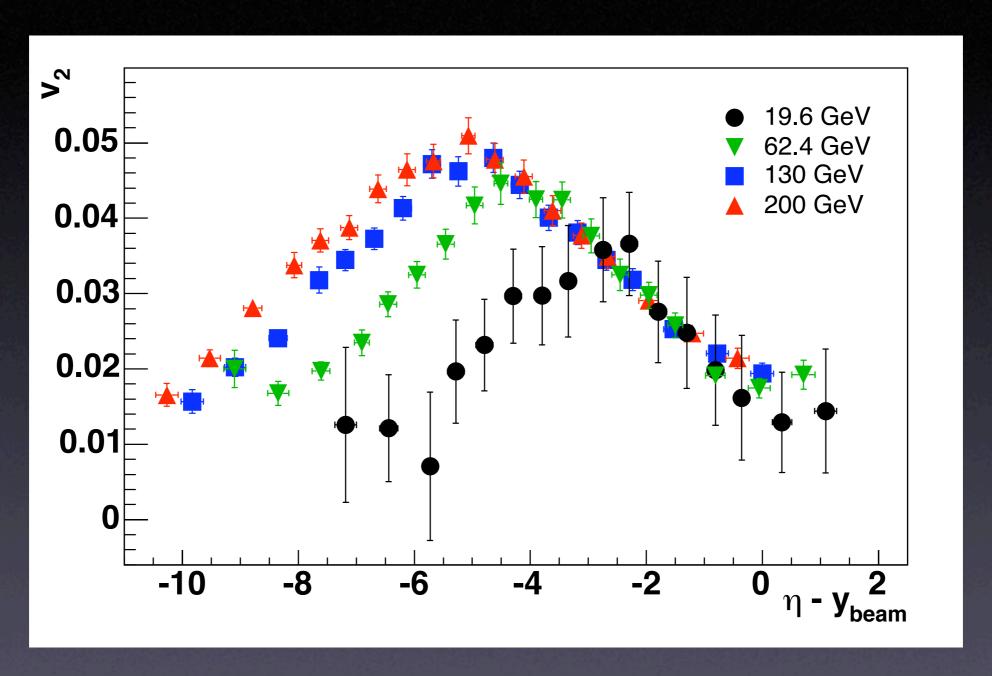


"Longitudinal Scaling"

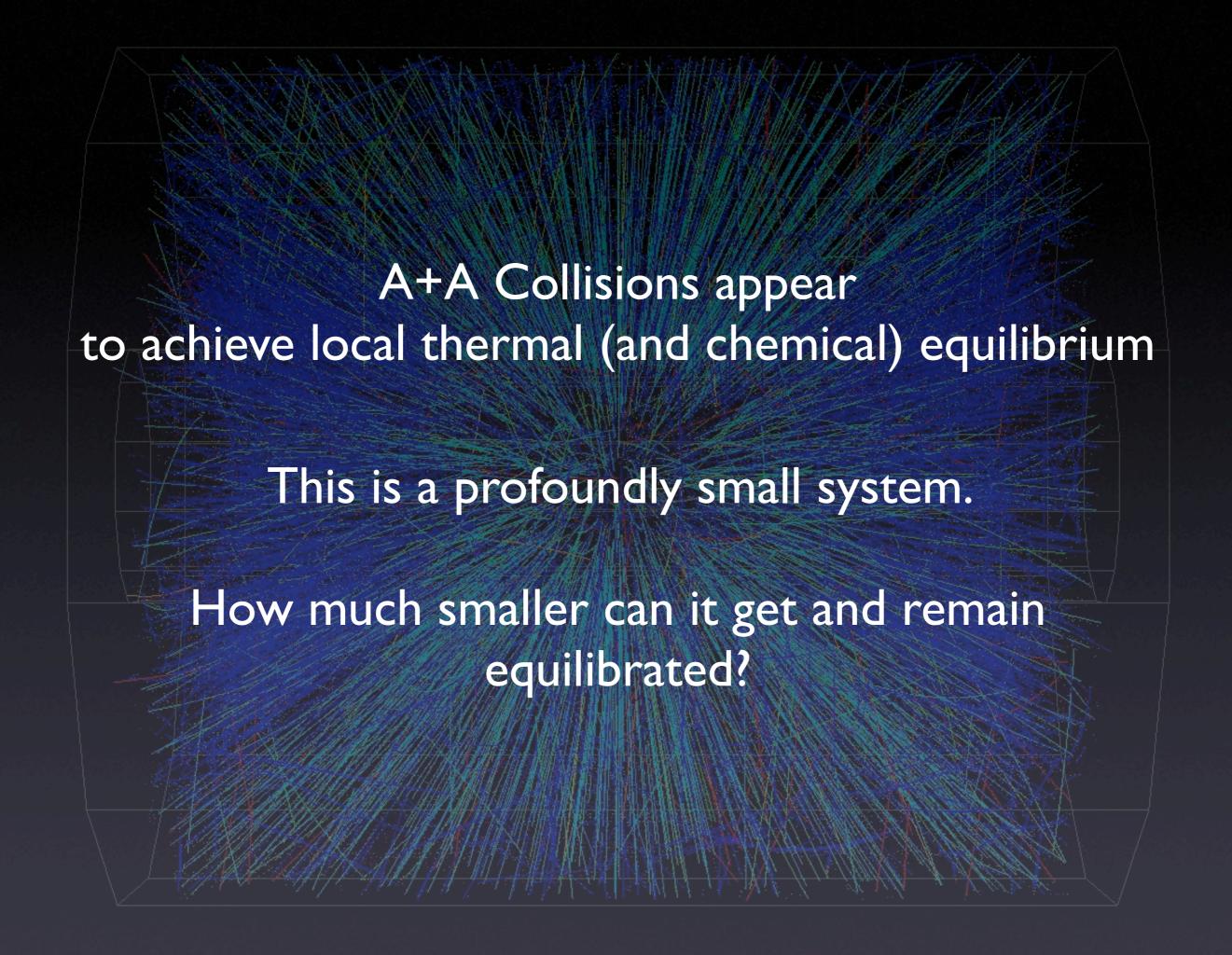


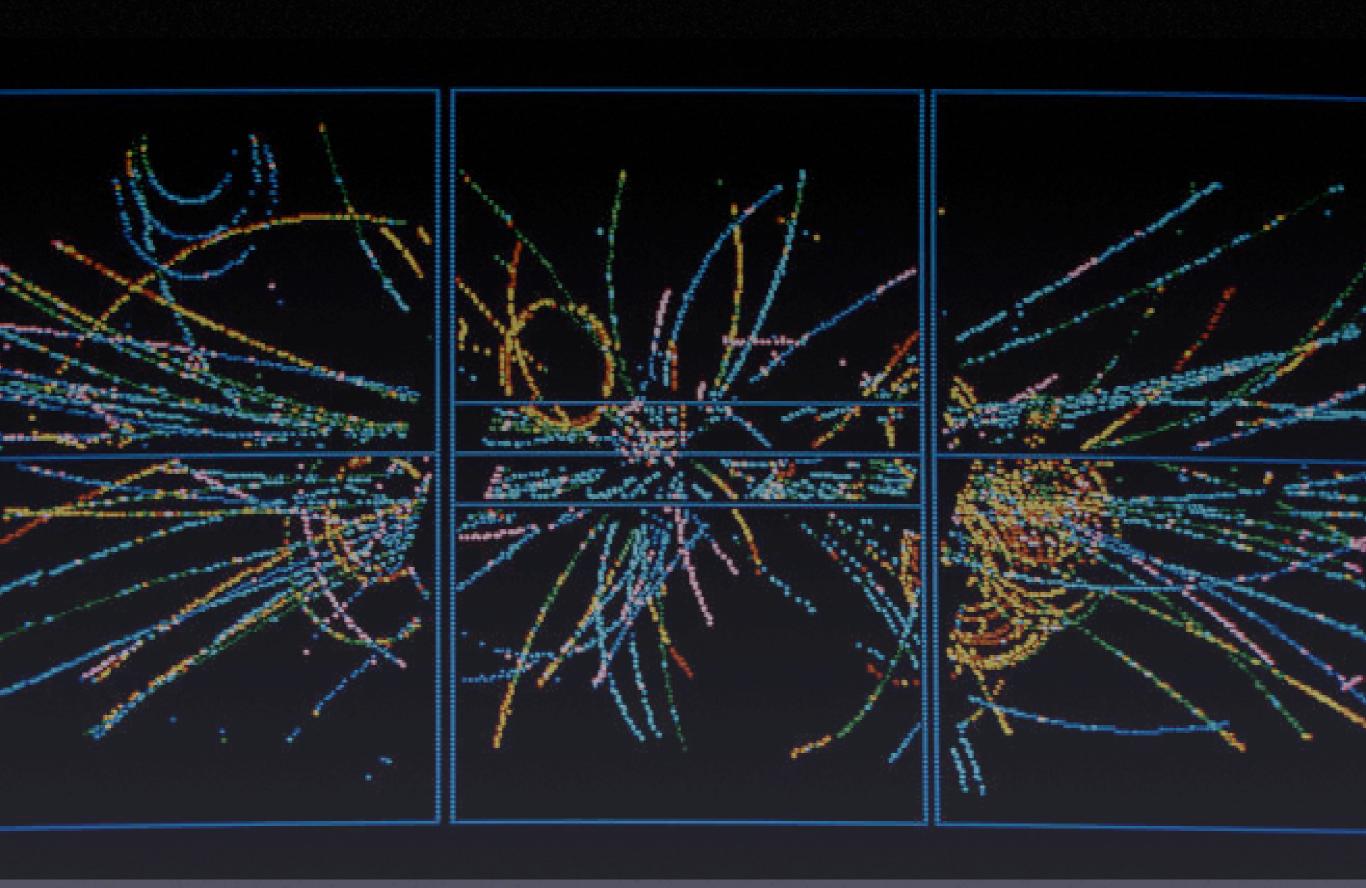
Central events Peripheral events

Longitudinal Scaling

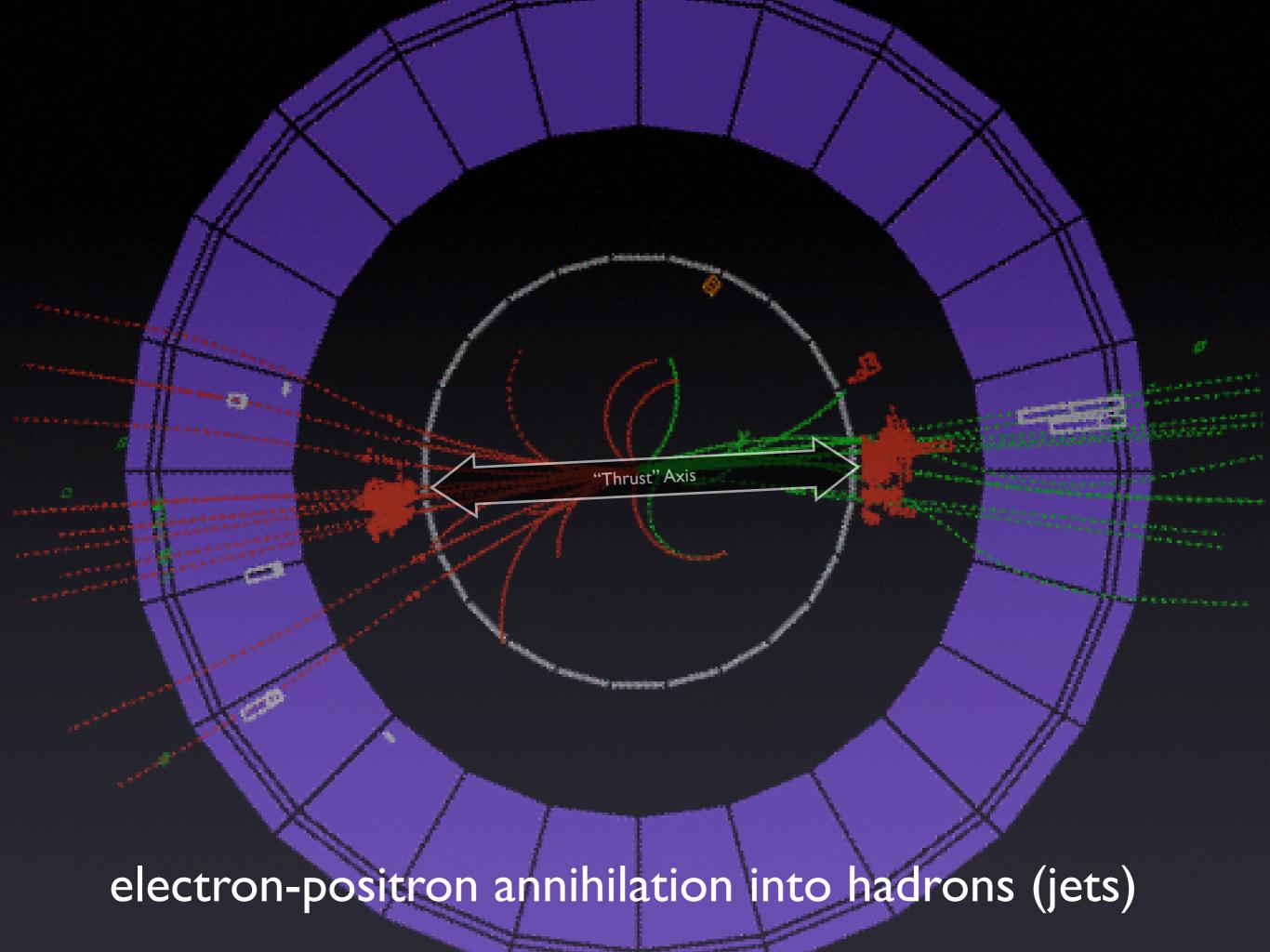


Does particle density control elliptic flow? Remains to be seen if these data fit dN/dy/S scaling...

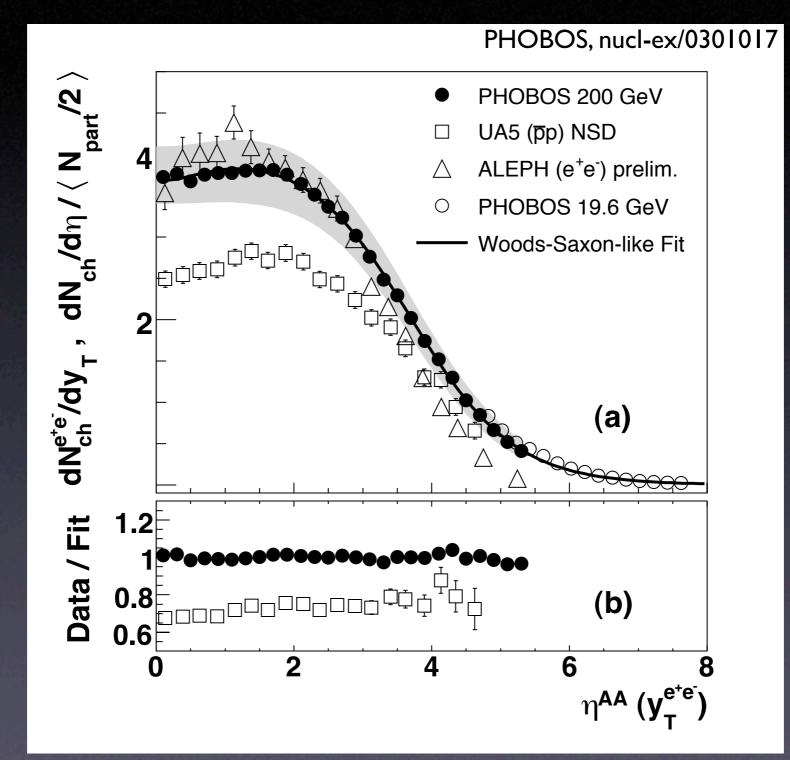




Proton-(anti) proton collisions?



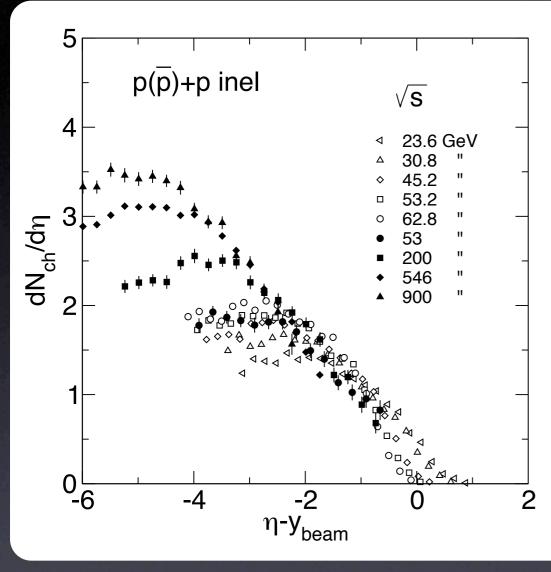
A+A vs. p+p (and e⁺e⁻)

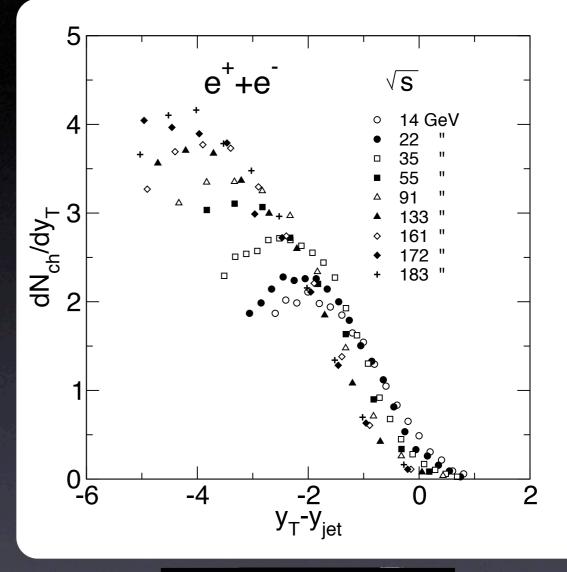


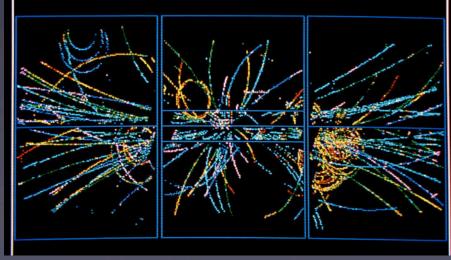
A+A ~ p+p x 4/3

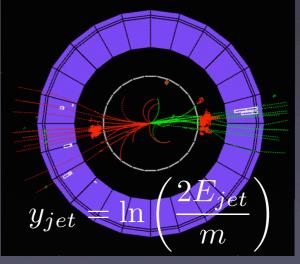
Similar angular distributions

Scaling in p+p and e⁺e⁻



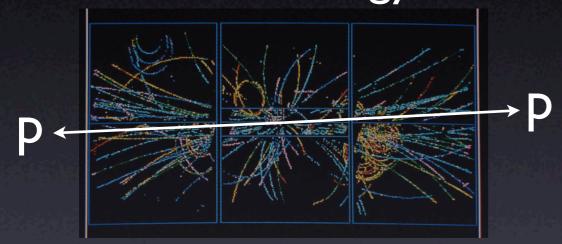






Leading Particle Effect

"leading" particles "keep" an arbitrary fraction of the initial energy

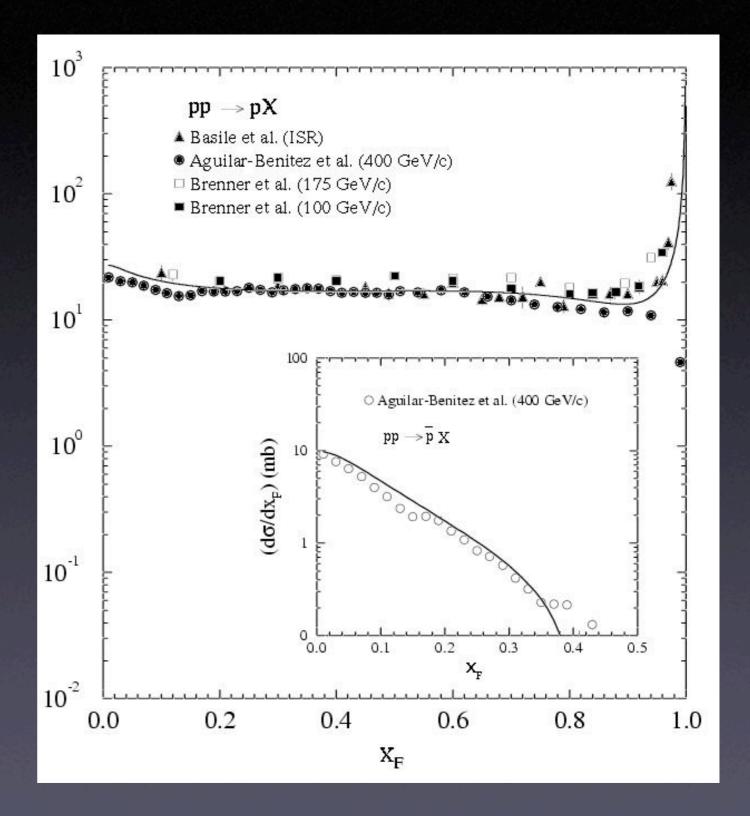


Flat probability distribution:

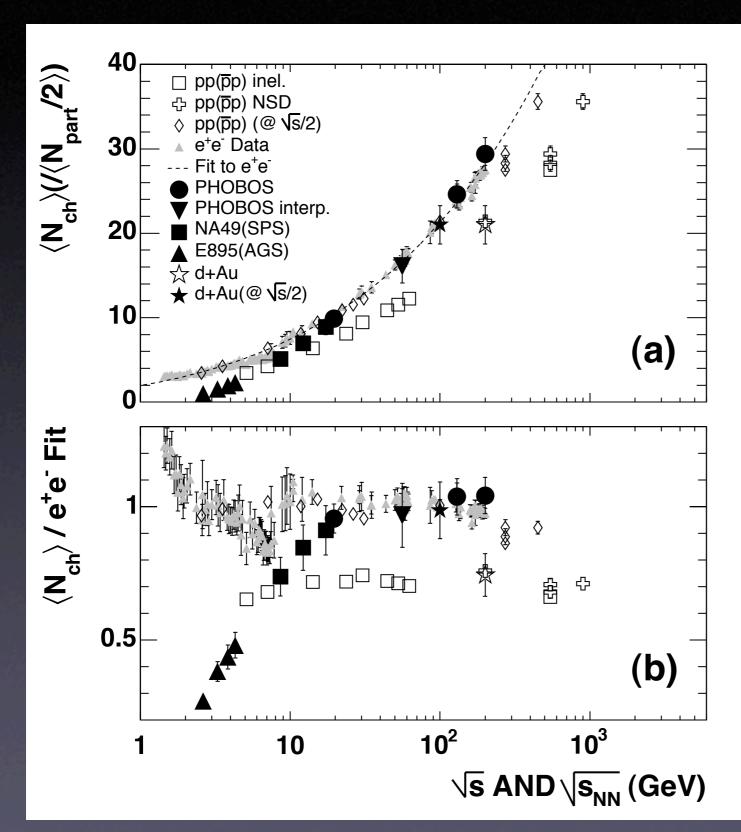
$$x_F = \frac{2p_z}{\sqrt{s}} \qquad \langle x_F \rangle \sim 1/2$$

$$\sqrt{s_{eff}} = \langle x_F \rangle \sqrt{s} = \frac{\sqrt{s}}{2}$$

"effective energy" (a la Basile et al)



Total Multiplicity

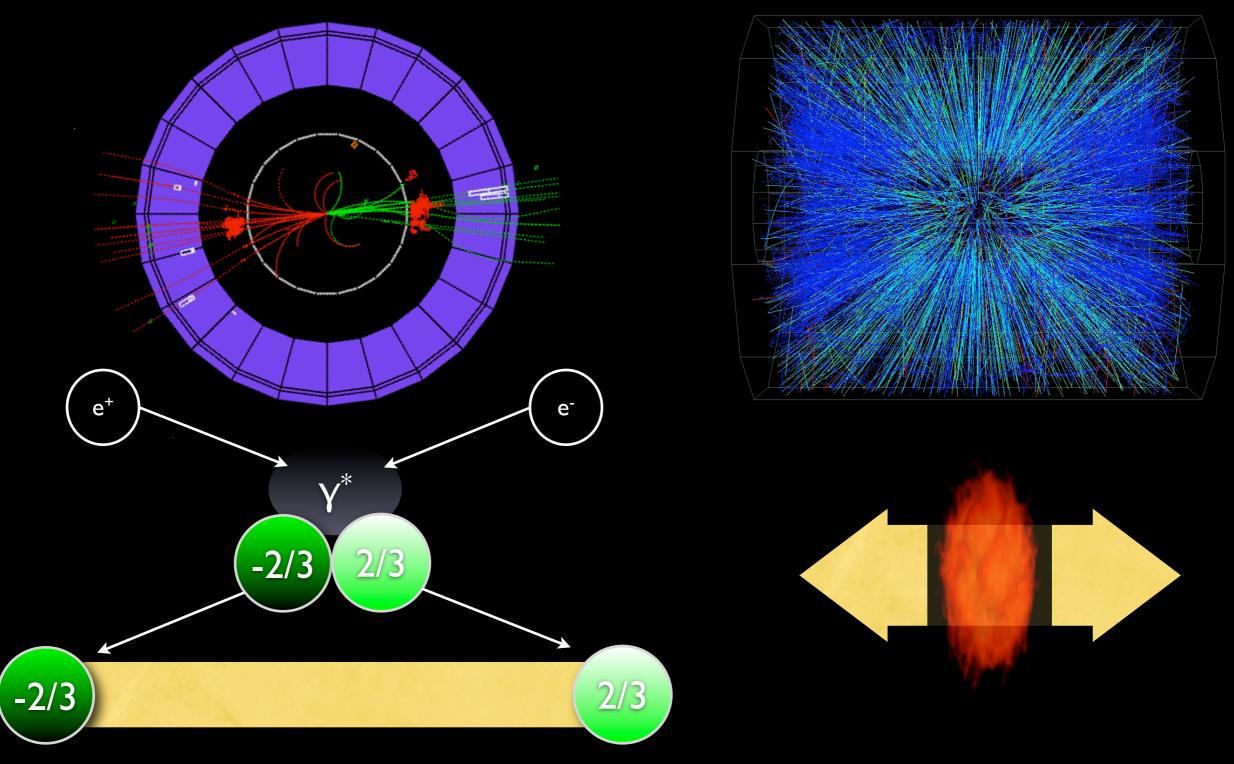


Total multiplicity vs. energy for A+A, p+p, e+e-(d+Au)

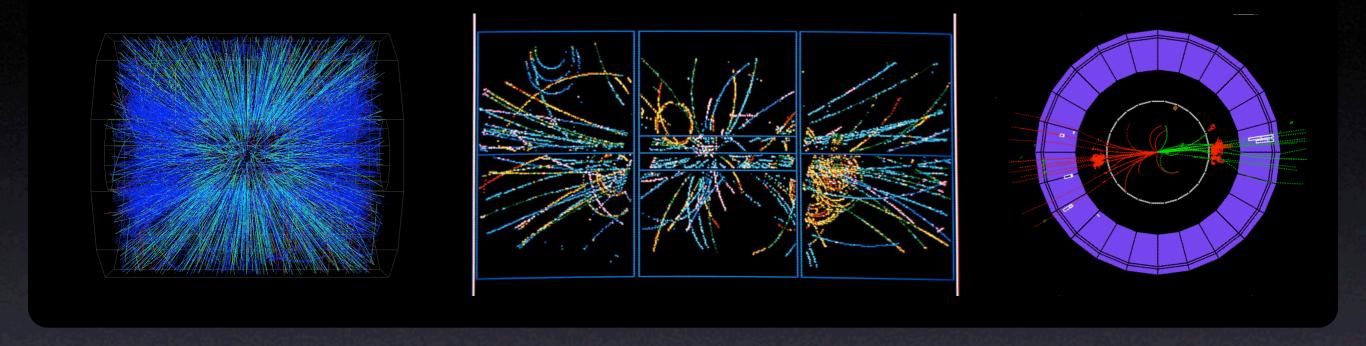
Divided by fit to e⁺e⁻ (based on pQCD)

 $n_{ch} \propto \alpha_s^A \exp(B/\sqrt{\alpha_s})$

e⁺e⁻ vs. A+A

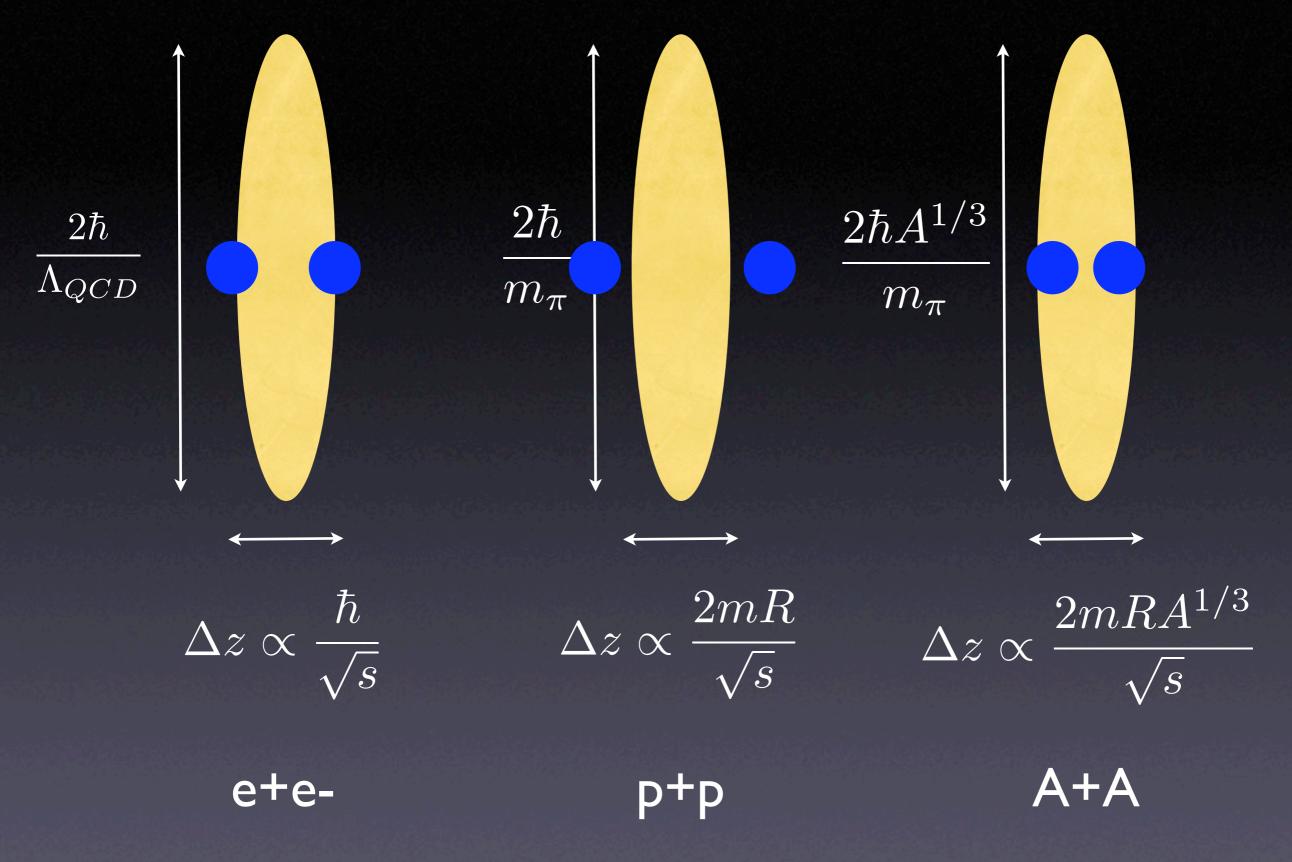


Similar features after dividing by Npart/2



What could be the same in these systems?

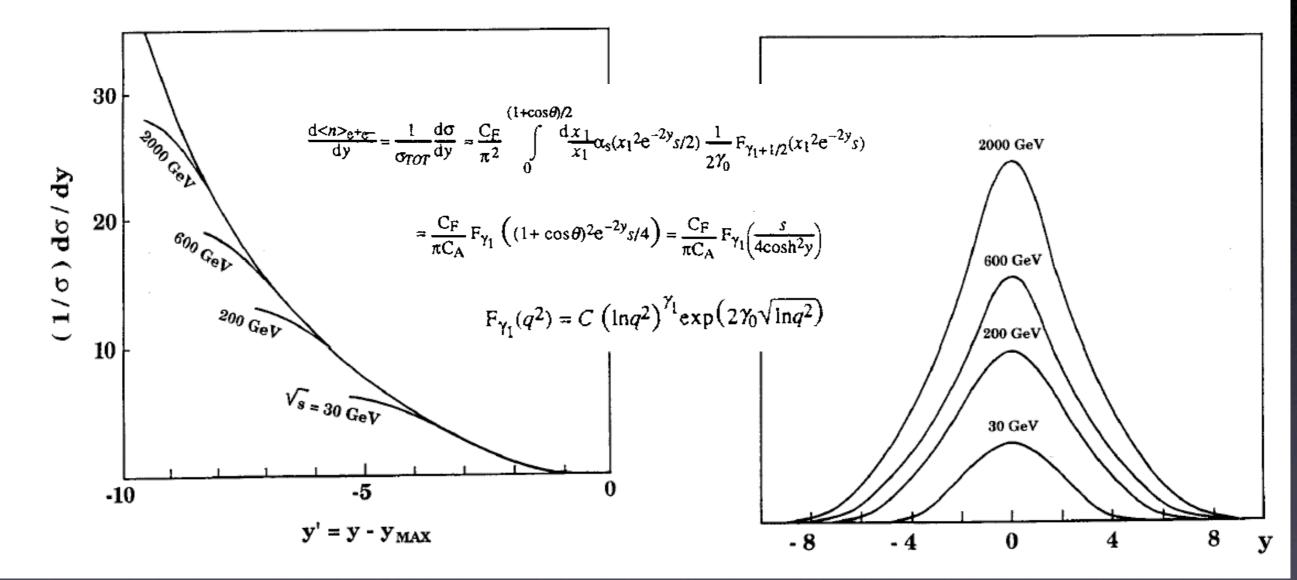
What if we treat <u>all</u> strongly interacting systems in the hydrodynamic (and thus statistical/thermal) paradigm, and with <u>Landau</u> initial conditions



Similar geometries and energy densities (& net baryons?)

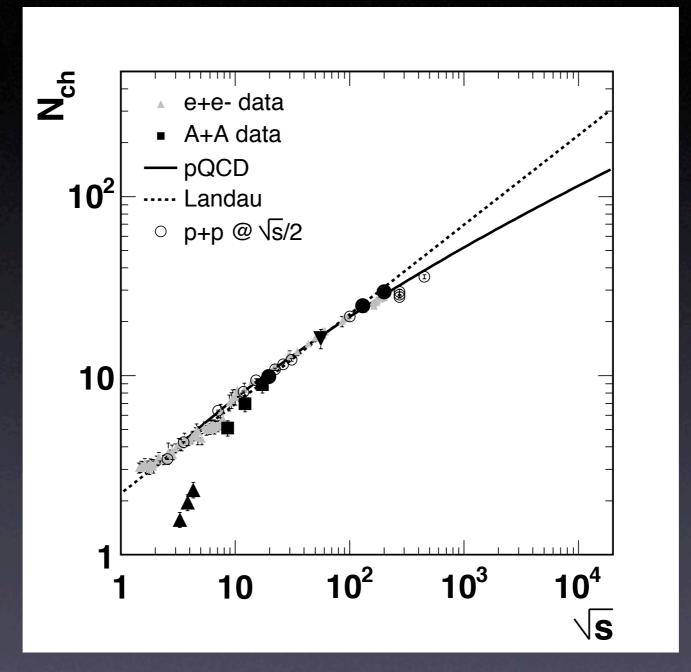
pQCD vs. Landau

K. Tesima, Z. Phys. C (1989)

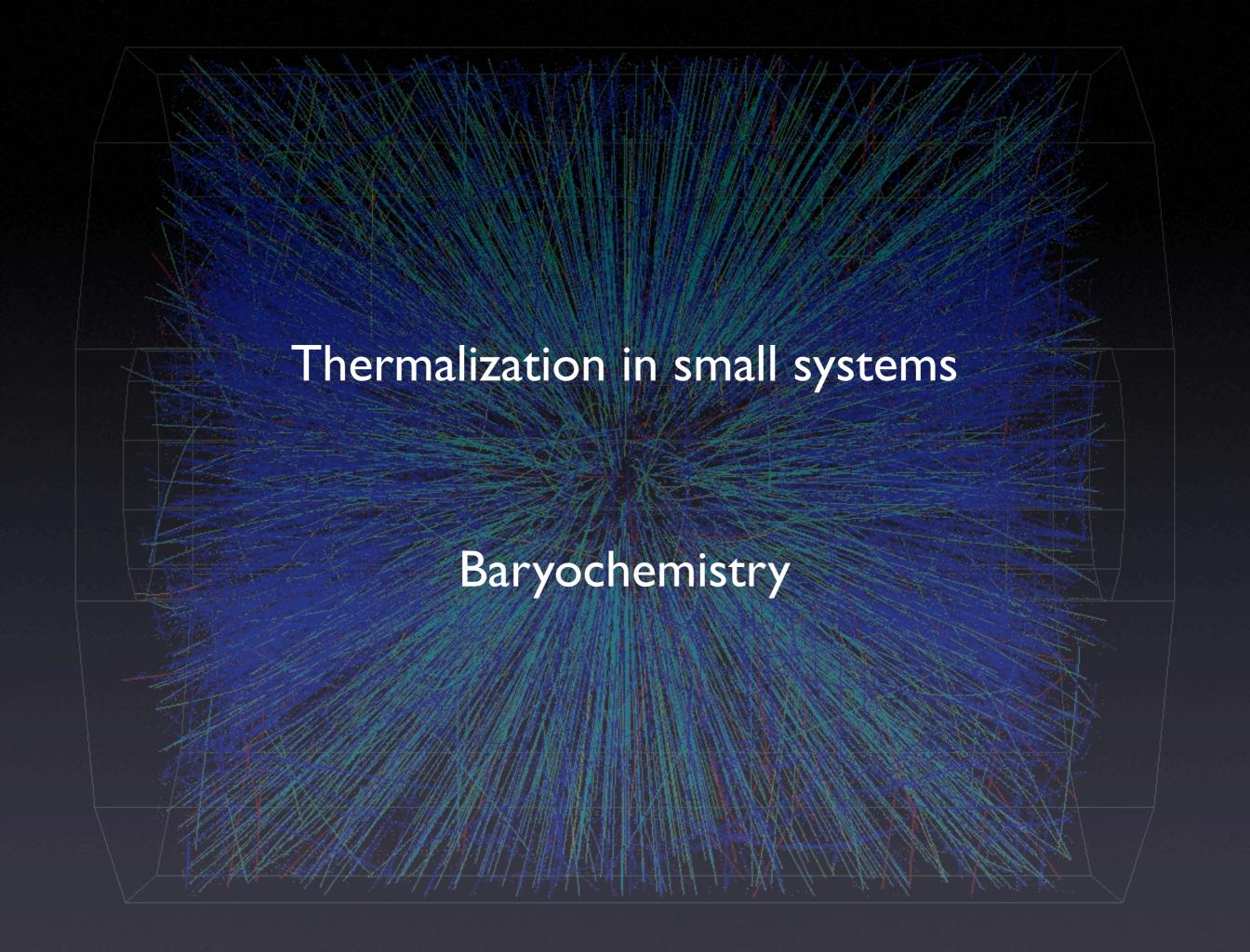


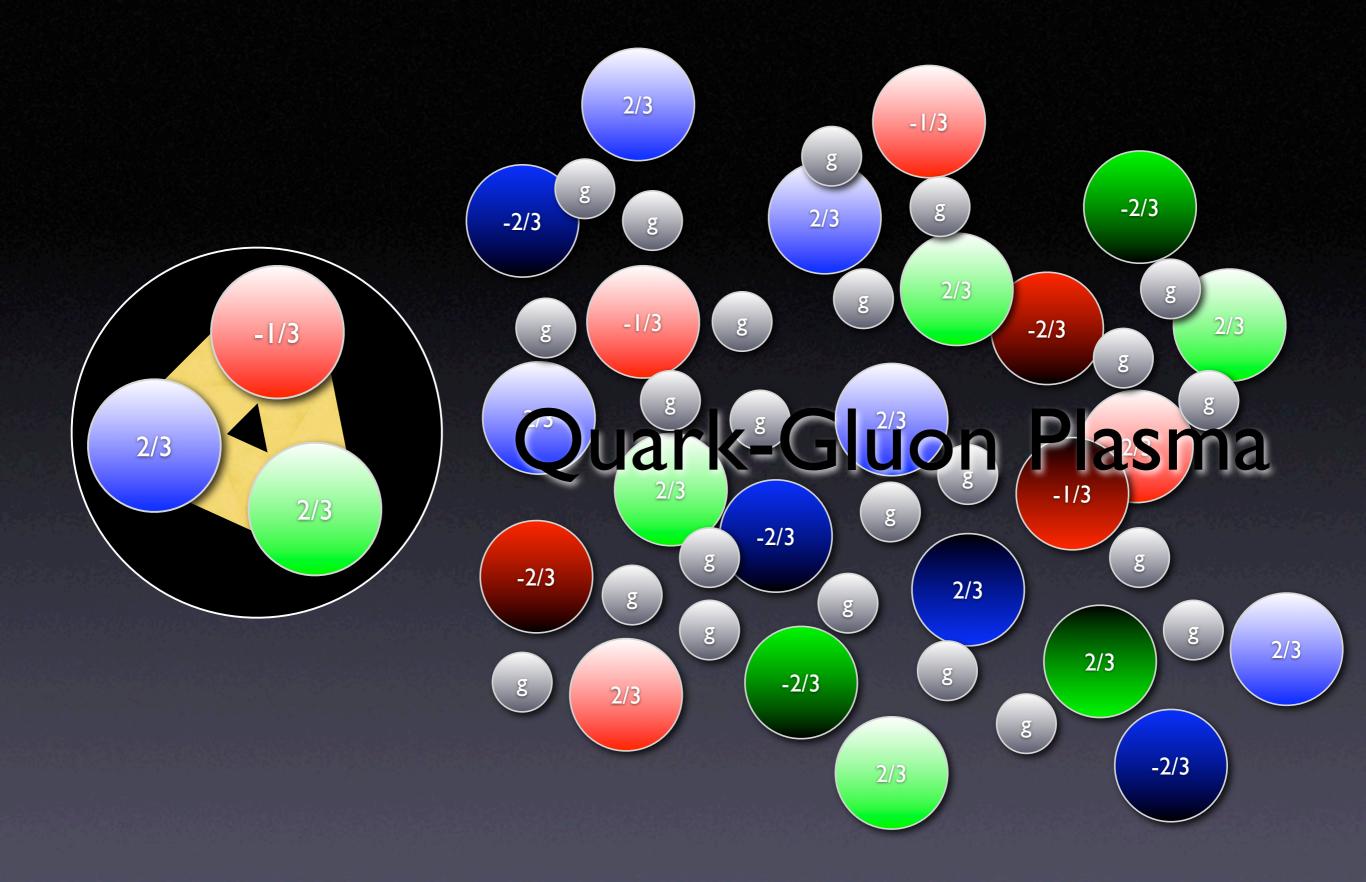
MLLA pQCD shows "limiting fragmentation" & $\sigma_y \propto \sqrt{log(s)}$ Why would resummed QCD give similar features?

pQCD vs. Landau



It has long been noted that pQCD & Landau multiplicity formulae give similar answers over a range of energies (LHC will be a crucial test in p+p and A+A!)





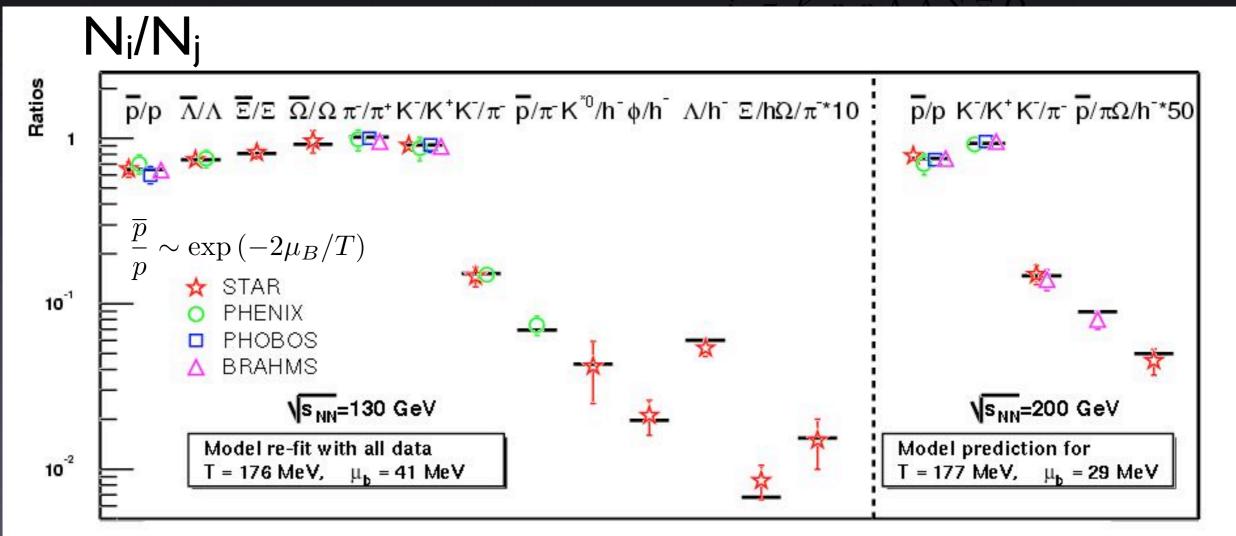
We only need to ~double the energy density of a nucleon!

Particle Ratios

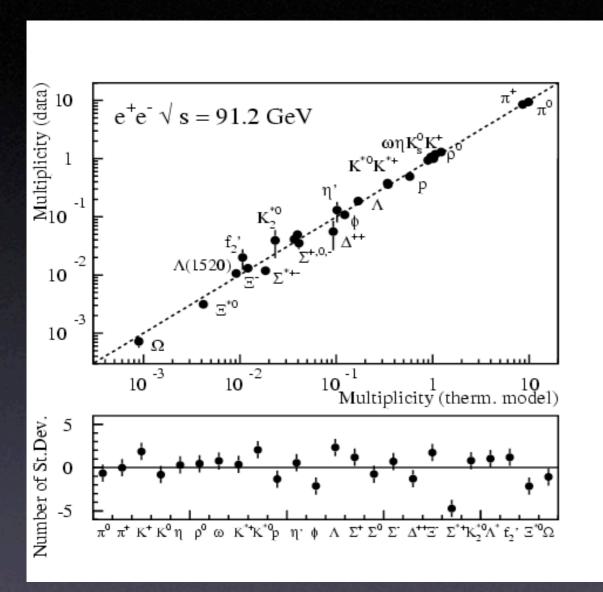
Т	Chemical freezeout temperature
μ _B	Baryochemical potential (when you have more matter than antimatter!)

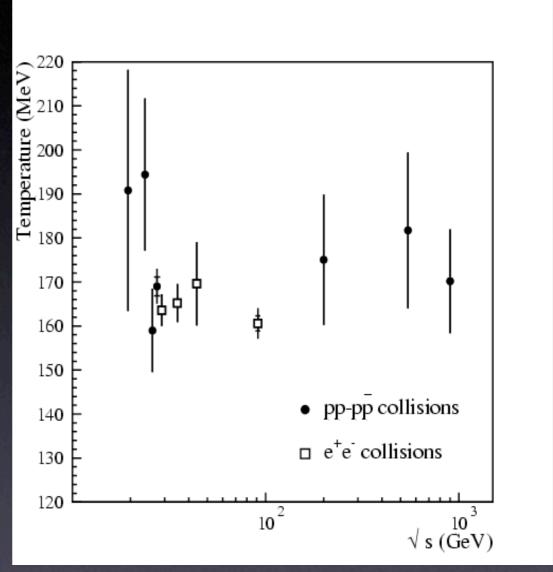
$$N_i \propto V \int \frac{d^3p}{(2\pi)^3} \frac{1}{e^{(\sqrt{p^2 + m^2} - \mu_B)/T} \pm 1}$$

Blackbody spectrum



Thermalization Everywhere?

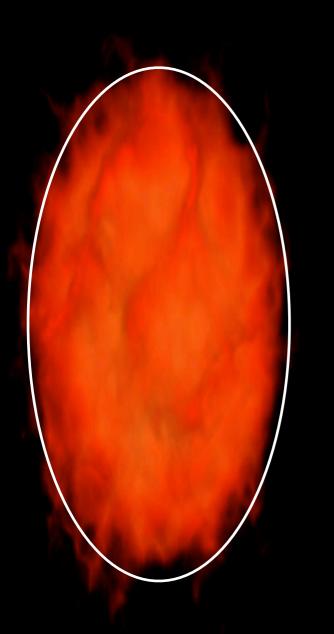


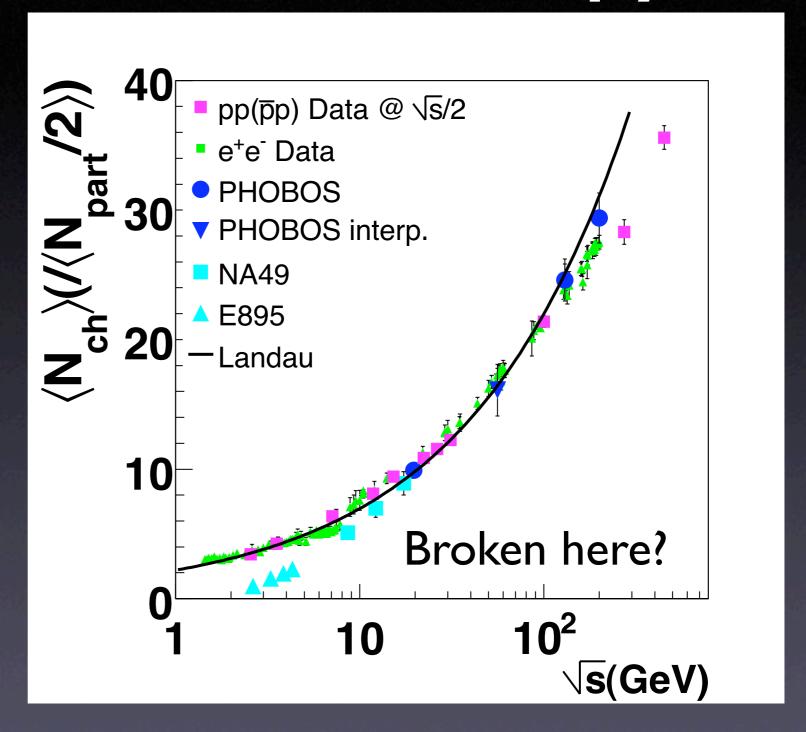


Statistical hadronization seems to work everywhere, with similar temperatures over a wide range of collision energy!

F. Becattini

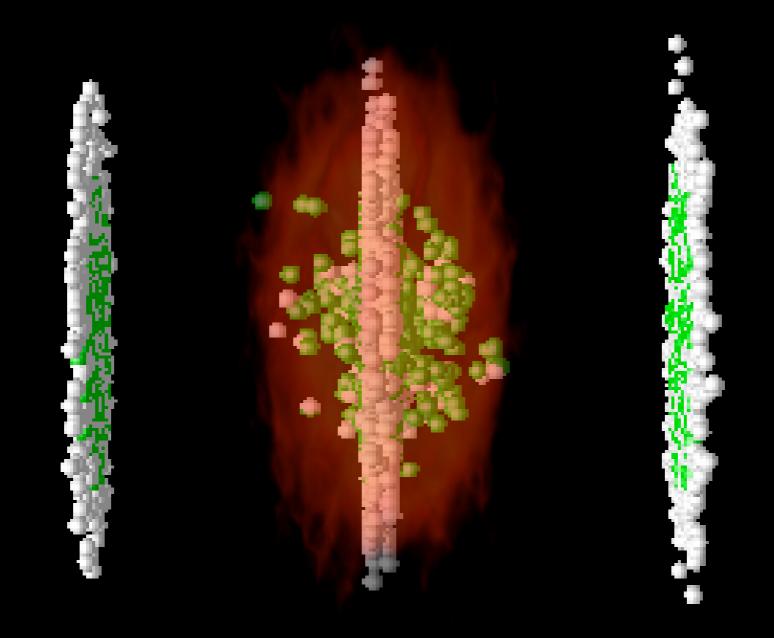
Fermi-Landau Entropy





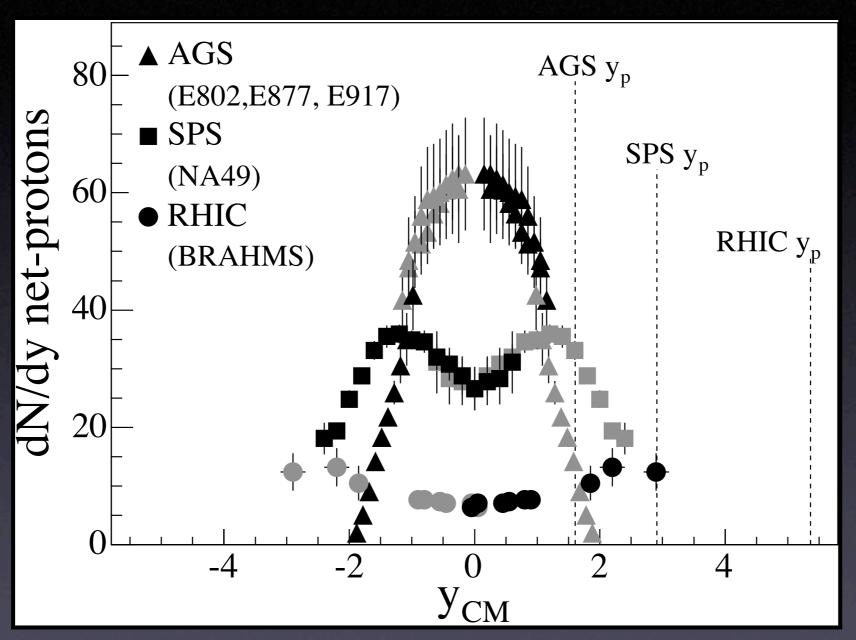
Direct relationship between energy density and entropy (which rises quite slowly)

What about the Baryons?



Nucleons are "baryons", which are conserved and much heavier than pions - an uneven trade!

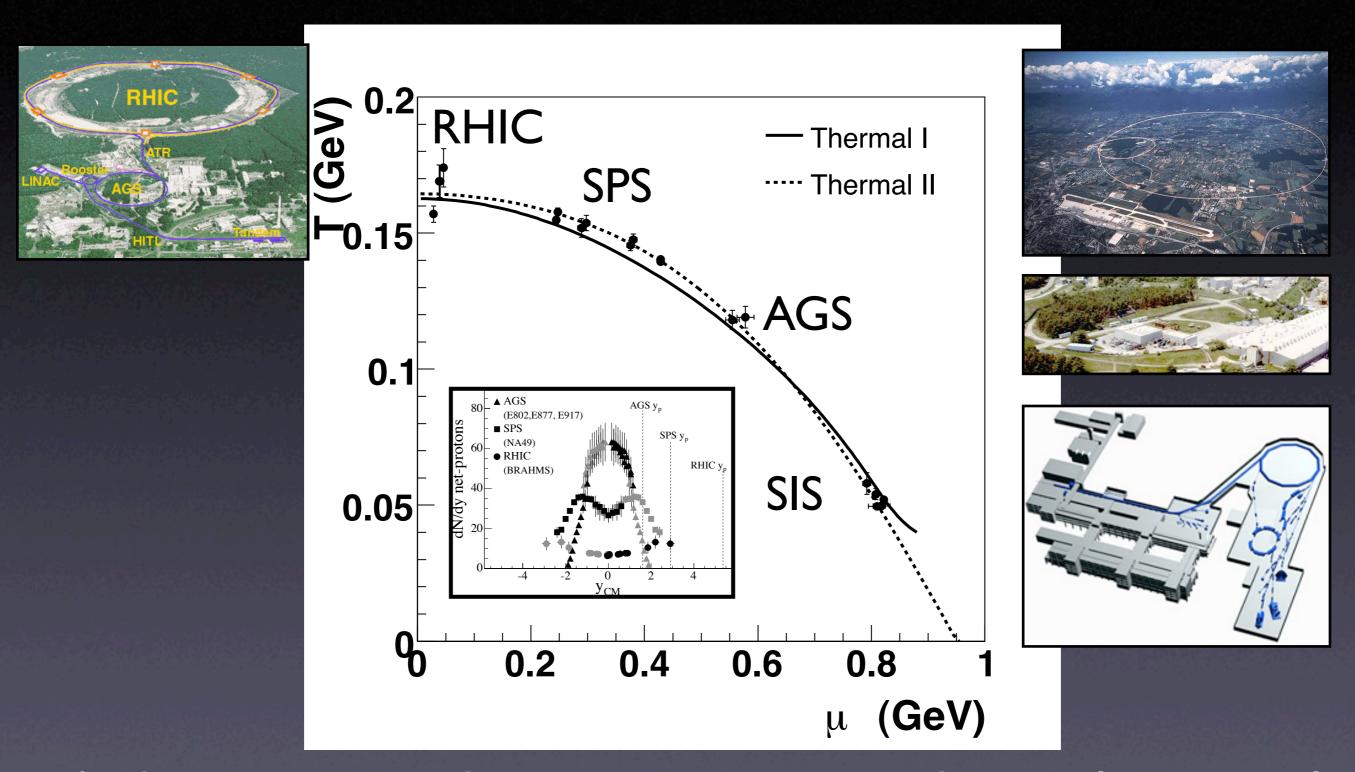
"Baryochemistry"



At low energies, the participating baryons are found to "pile up", with most of them nearly at rest.

At higher energies, they seem to have appreciable velocity...

"Phase Diagram"



As beam energy decreases, increases chemical potential

Baryochemistry

In equilibrium:

$$G = E + PV - TS = \mu_B N_B$$

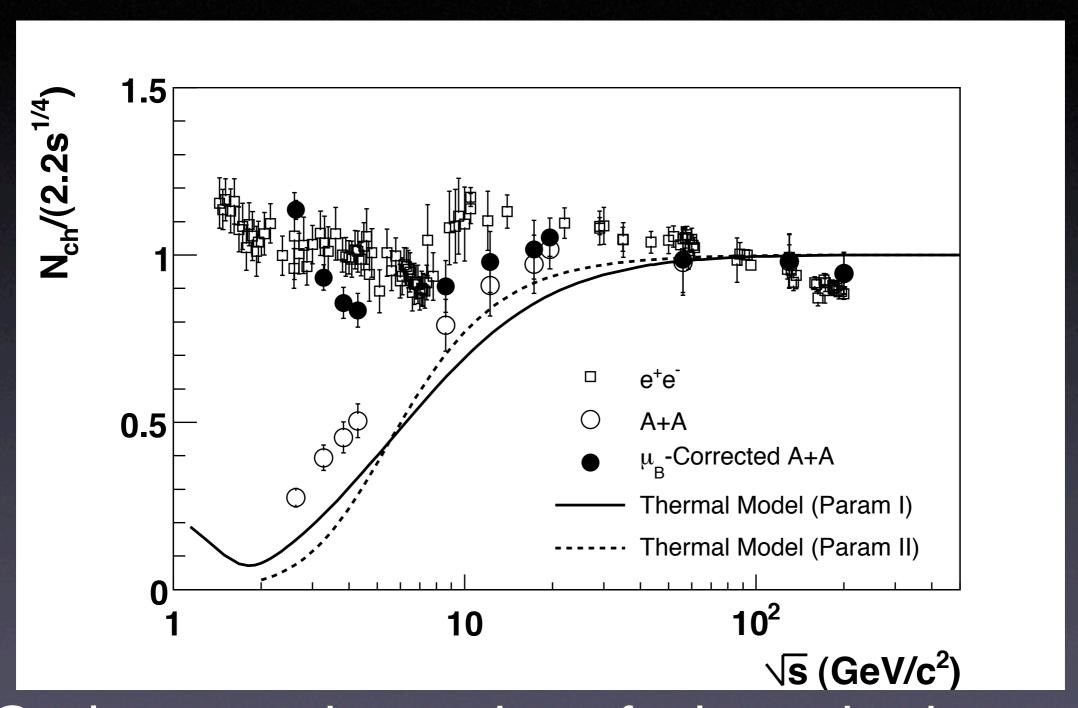
Rearranges to:

$$S = \frac{E + PV}{T} - \frac{\mu_B N_B}{T}$$

So chemical potential reduces entropy, and thus total multiplicity:

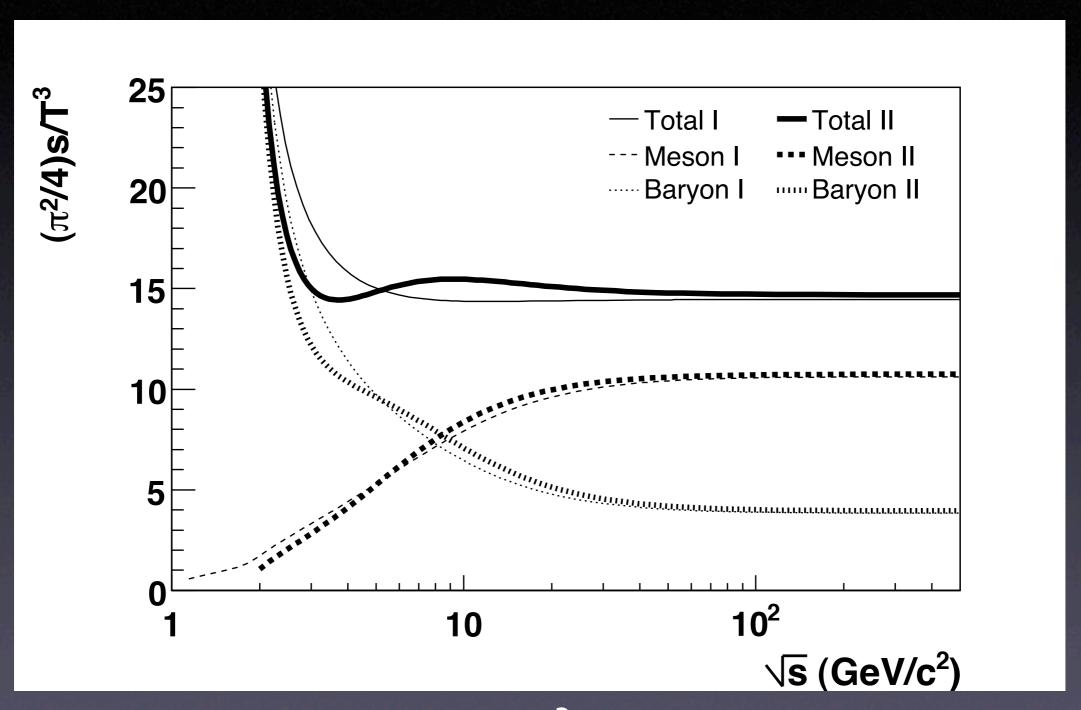
$$\Delta \frac{N_{ch}}{N_{part}/2} \propto \frac{\mu_B}{T}$$

Application to Data

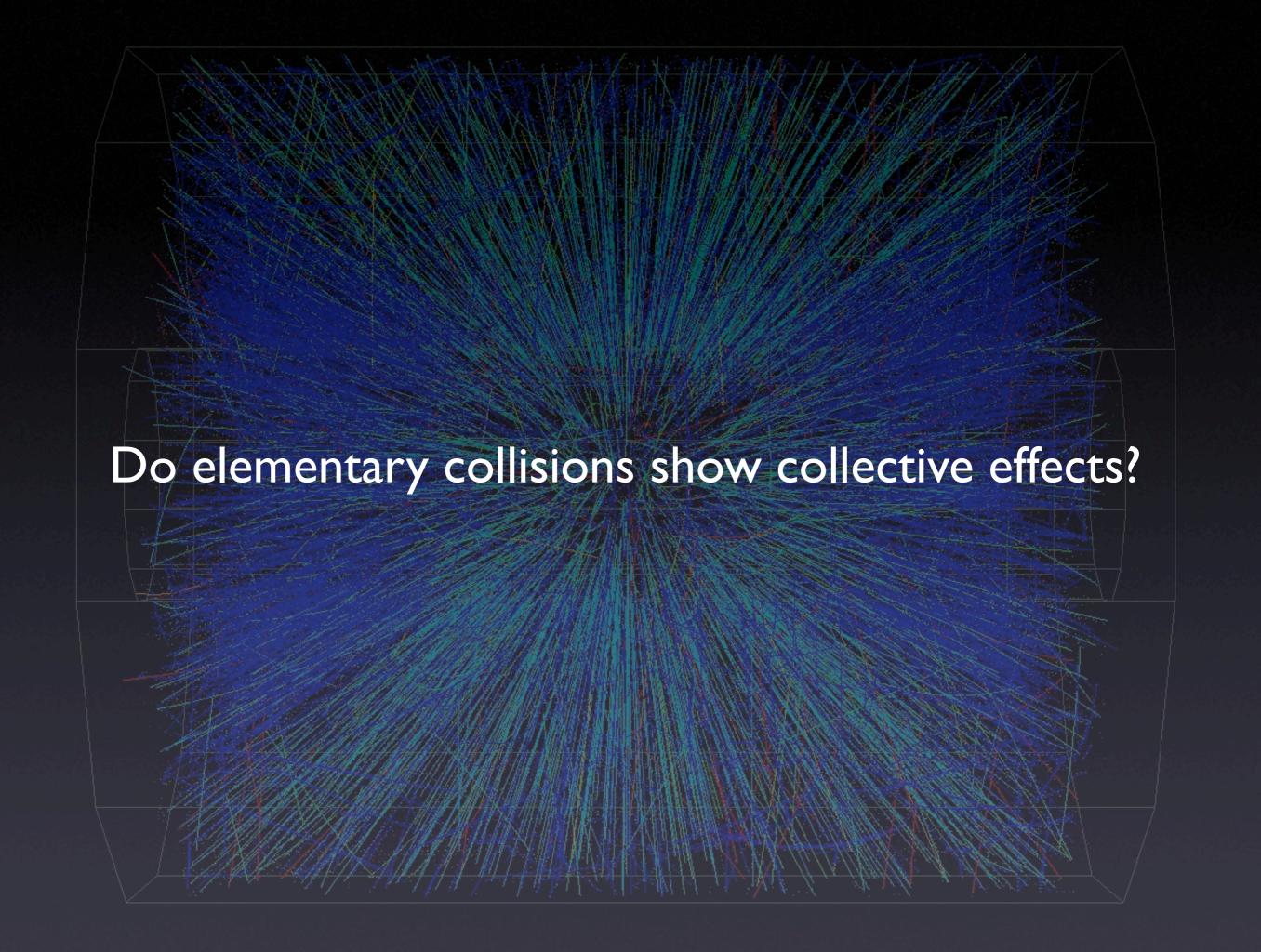


Qualitative understanding of relationship between baryon density and entropy!

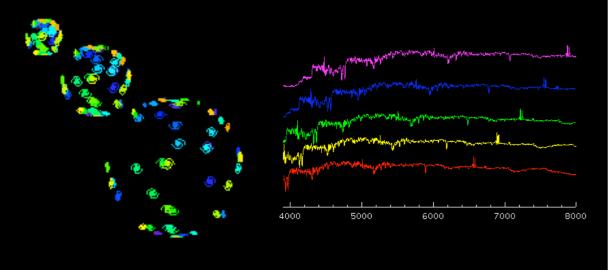
Baryons vs. Mesons



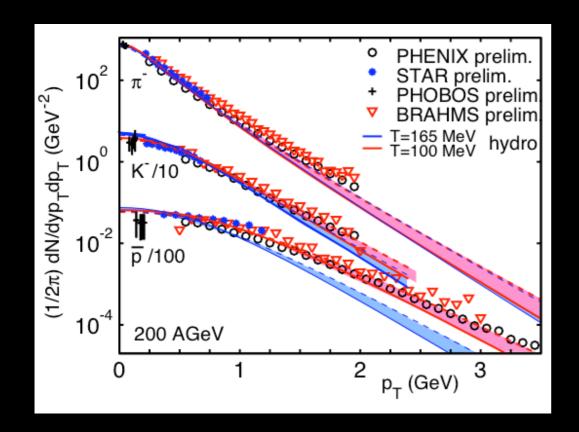
As energy changes, s/T³ (degrees of freedom) remain constant!

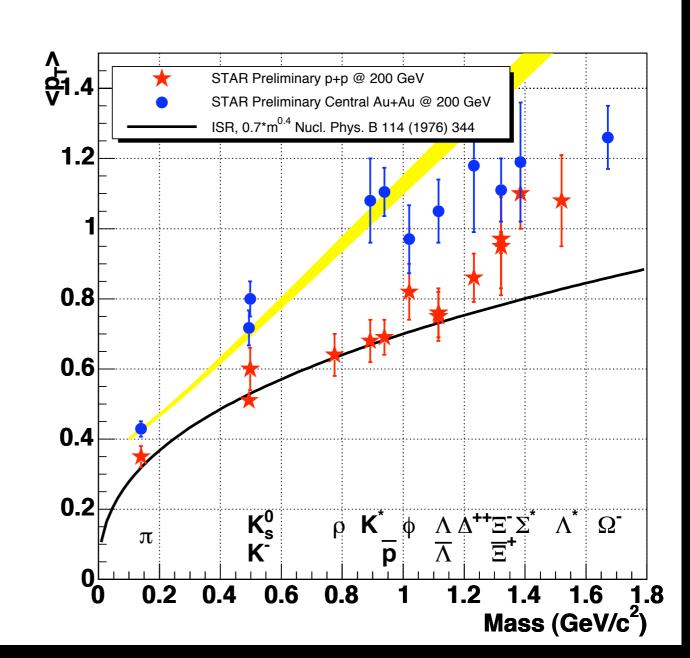


Radial Expansion, Redux



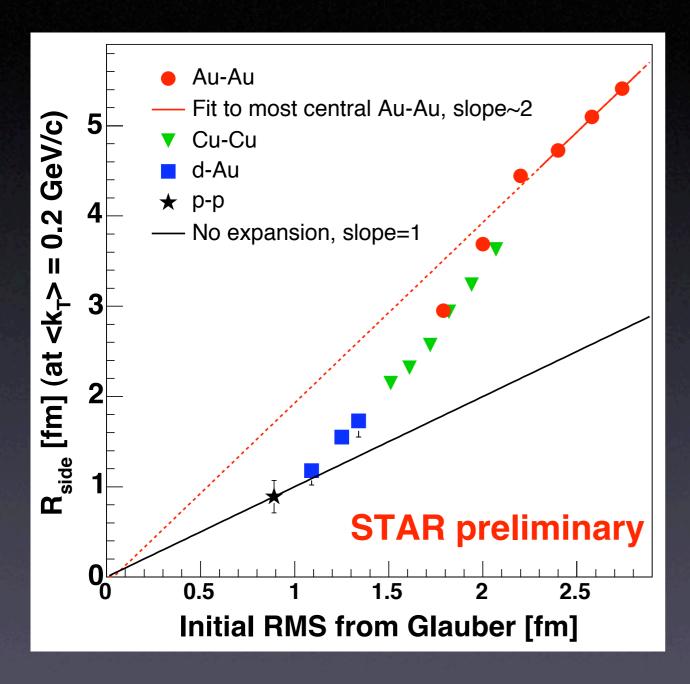
$$T_{eff} = T_0 + m\beta_T^2$$

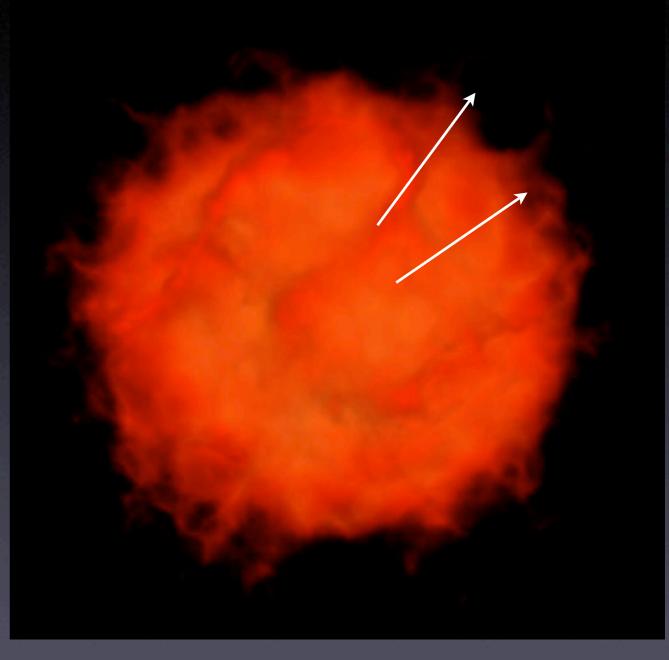




"Blue shifting" seen in A+A and p+p (STAR)

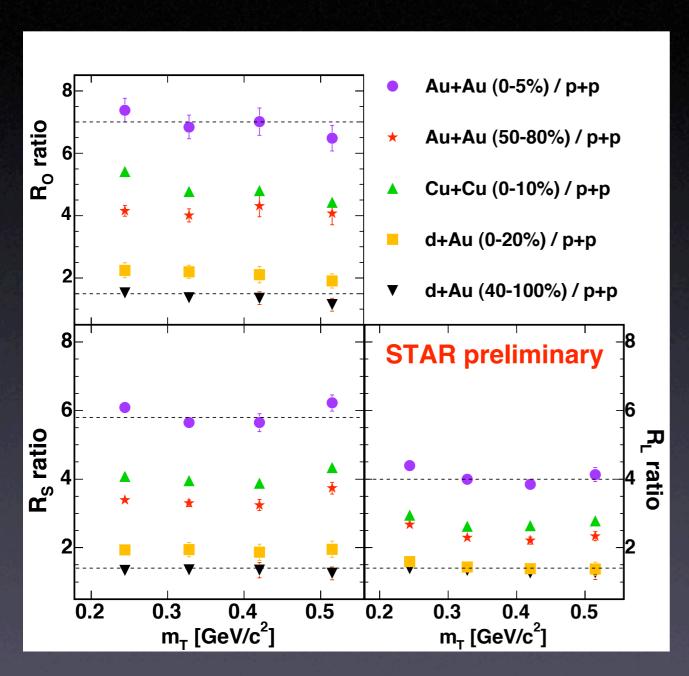
Radial Expansion, contd.

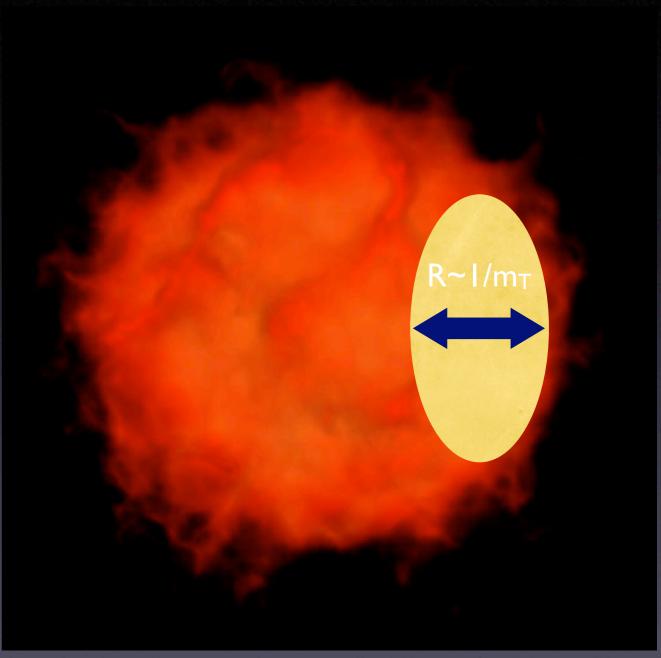




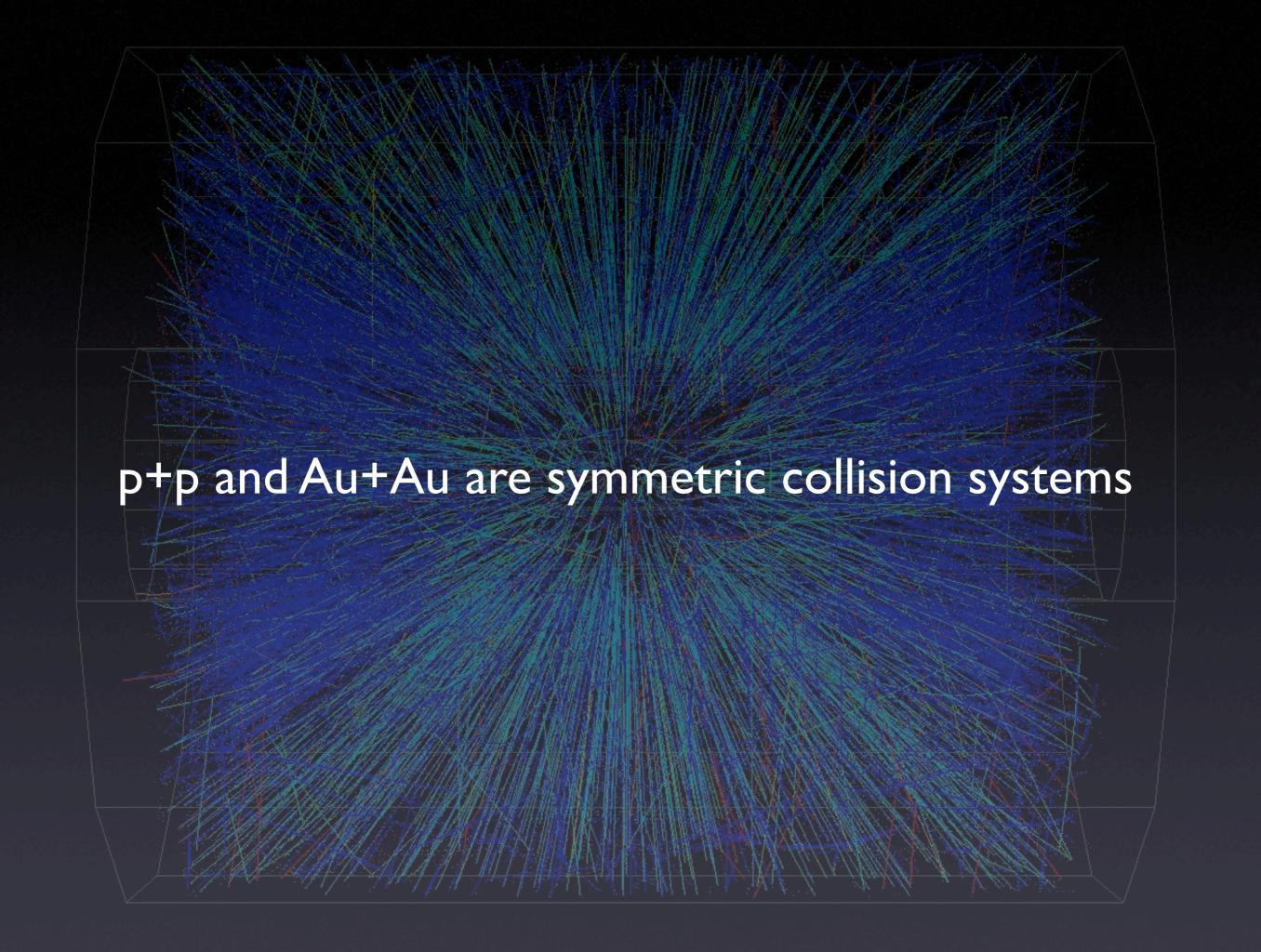
STAR Data on HBT Radii in p+p, d+Au and Au+Au
Continuum of expansion-like behavior

Radial Expansion, contd.

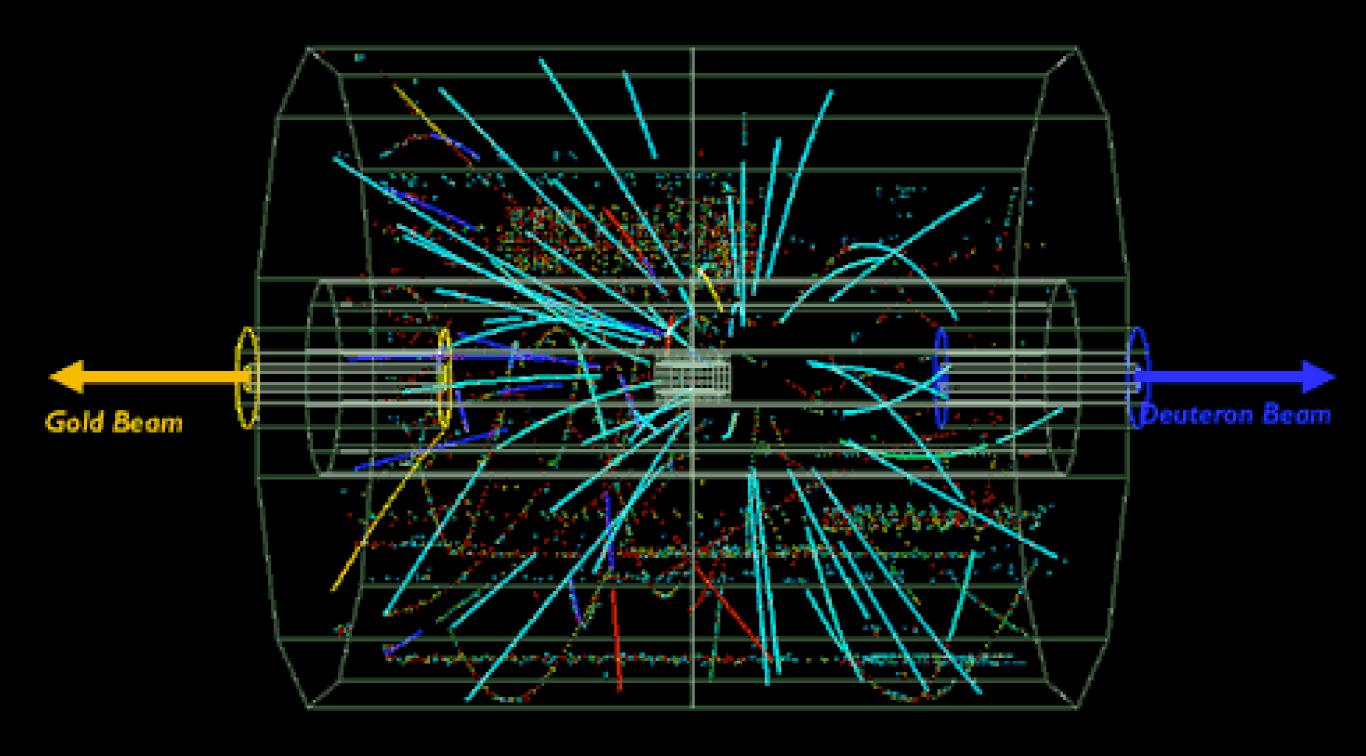




Ratios of A+A/p+p "scale", i.e. same relative change vs. m_T Continuum of expansion-like behavior



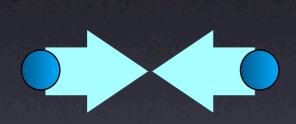
Asymmetric Systems

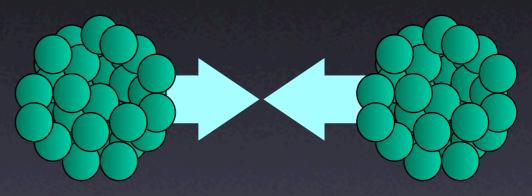


deuteron-gold collision in STAR

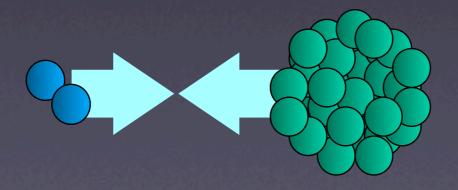
Asymmetric Systems

If early energy density controls entropy and longitudinal dynamics, then not surprising things look similar in smaller and larger symmetric systems (p+p, A+A, e+e-)





How do things behave in an asymmetric system?



Centrality Bins in d+Au

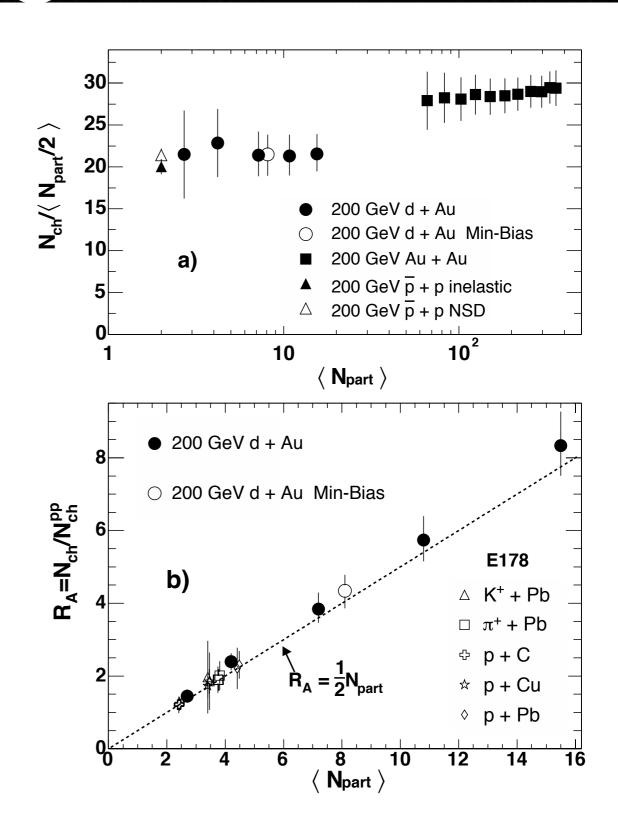
Cent. (%)	$\langle { m N}^{ m Au}_{ m part} angle$				
0-20	13.5 ± 1.0	2.0 ± 0.1	14.7 ± 0.9	157 ± 10	167^{+14}_{-11}
20 – 40	8.9 ± 0.7	1.9 ± 0.1	9.8 ± 0.7	109 ± 7	
40 – 60	5.4 ± 0.6	1.7 ± 0.2	5.9 ± 0.6	74 ± 5	77^{+7}_{-5}
60 – 80	2.9 ± 0.5	1.4 ± 0.2	3.1 ± 0.6	46 ± 3	—.)
80 – 100	1.6 ± 0.4	1.1 ± 0.2	1.7 ± 0.5	28 ± 3	29^{+3}_{-3}
Min-Bias	6.6 ± 0.5	1.7 ± 0.1	7.1 ± 0.5	82 ± 6	87^{+7}_{-6}
50-70	3.9 ± 0.6	1.6 ± 0.2	4.2 ± 0.6	59 ± 4	62^{+5}_{-4}
-					

Npart scaling in d+Au

d+Au is also constant per N_{part}/2

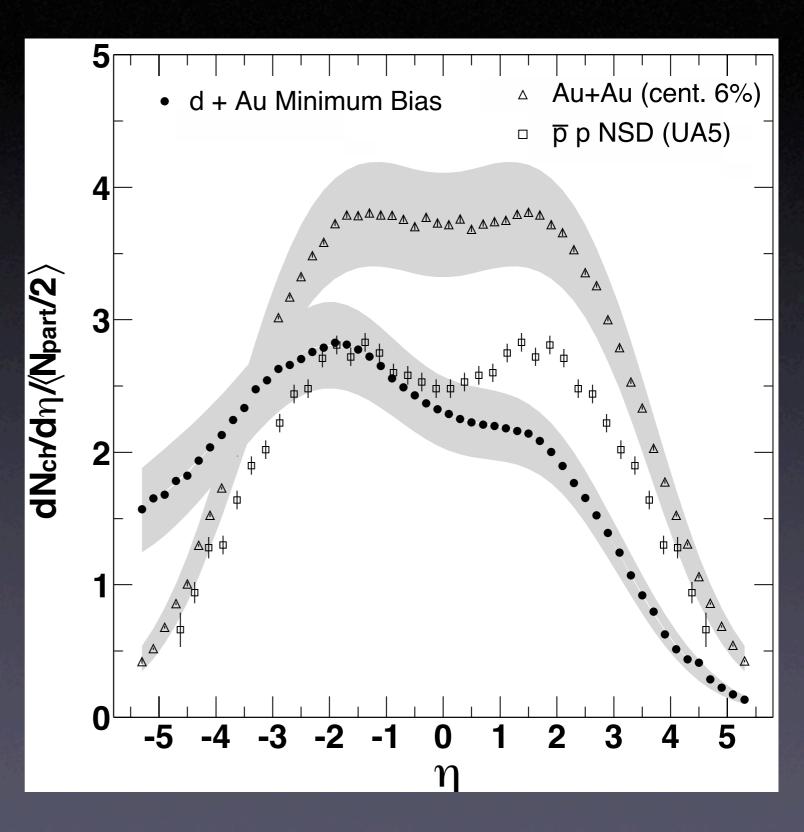
"wounded nucleon scaling" seen at lower energies

But one sees a "jump"
between p+p/d+Au
and Au+Au
(a hint about how
stopping occurs?)

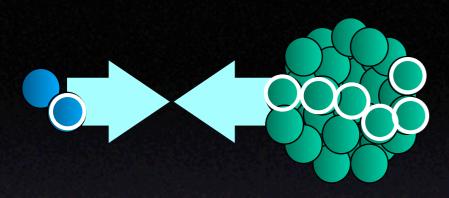


d+Au vs. p+p & Au+Au

Although the integrated multiplicity per wounded nucleon is similar to p+p, the particles seem to be "shifted" in phase space!

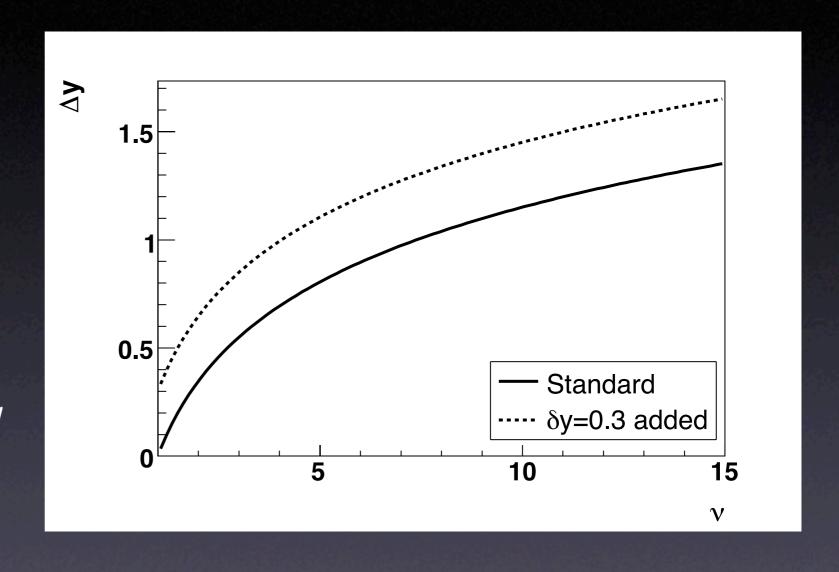


Shifted CMS



Colliding system is not at rest in CMS system

$$\Delta y = -\frac{1}{2} \ln \left(\frac{N_{part}^{Au}}{N_{part}^{d}} \right) + \delta y$$
$$= -\ln \left(\sqrt{\nu} \right) + \delta y$$



One might expect contributions to rapidity shift from spectators or transverse dynamics, so could consider "extra" component by

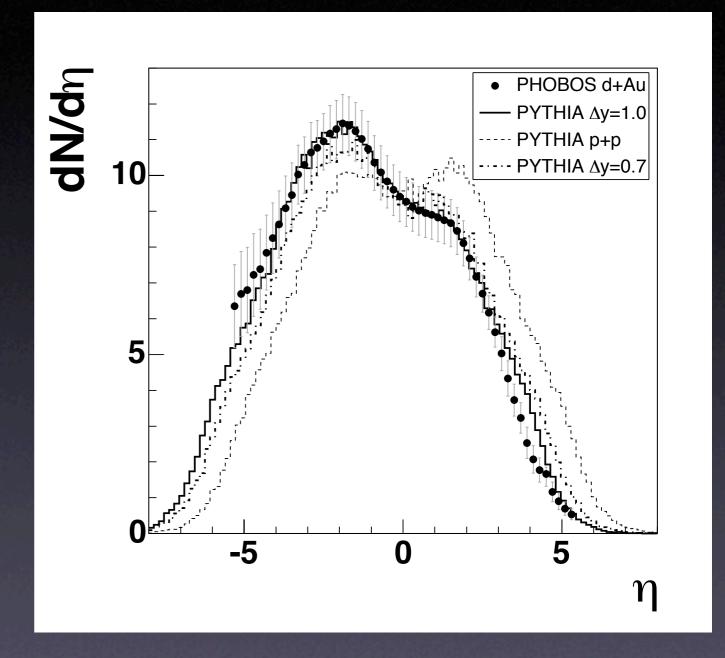
A "Trivial" Model

Take charged particles in PYTHIA distributed as dN/dy

Shift them in <u>rapidity</u> by Δy

Recalculate the η of each particle and make a dN/dη spectrum

Scale up by N_{part}/2



Surprisingly efficient description of d+Au data

Comparisons to p+p

$$R_{\eta} = \frac{\frac{dN}{d\eta}_{d+Au}}{\frac{dN}{d\eta}_{p+p}}$$

Predictions from the 1970's thought that the ratio between p+A and p+p should be "wedge-shaped"

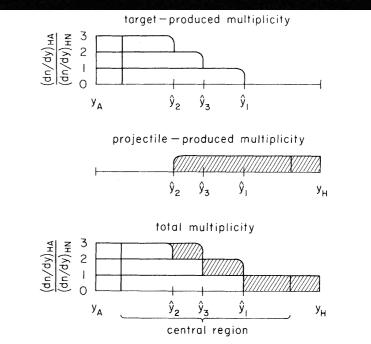


FIG. 1. Idealized multiplicity distribution for an H-A collision with $\overline{\nu}=3$ inelastic excitations. The y_i are uniformly distributed in rapidity and can be produced in any sequence.

= $[\bar{\nu}/(\bar{\nu}+1)]Y_c$. Thus we obtain, for the ratio of multiplicities in the central region,

$$\langle n \rangle_{HA} / \langle n \rangle_{HN} = \overline{\nu} / 2 + \overline{\nu} / (\overline{\nu} + 1),$$
 (2)

where the only dependence on the projectile H is through the definition of $\overline{\nu}$.

The distribution of particles averaged over events produced from the excitation of the nuclear partons is wedge shaped. The ratio of distributions $R_A(y)$ in the central region for hadron-nucleon to hadron-nucleus collisions is simply $(y_A \equiv 0)$

$$\frac{(dn/dy)_{HA}}{(dn/dy)_{HN}} = \overline{\nu} \left(1 - \frac{y}{Y_c} \right) + \left[1 - \left(1 - \frac{y}{Y_c} \right)^{\overline{\nu}} \right]. \quad (3)$$

Brodsky, Gunion, Kuhn (1977)

"Shift" Model of Rn

I. Direct calculation with PYTHIA:

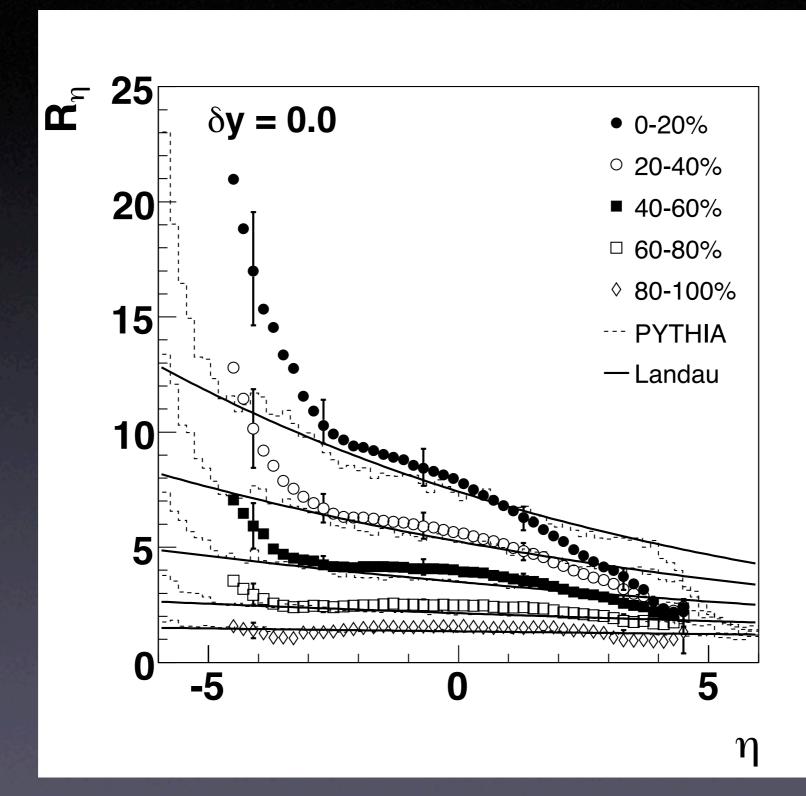
Recalculate pseudorapidity distribution after shifting rapidity, and scaling by N_{part} /2,then divide by p+p

2. Shift "Landau-inspired" gaussians

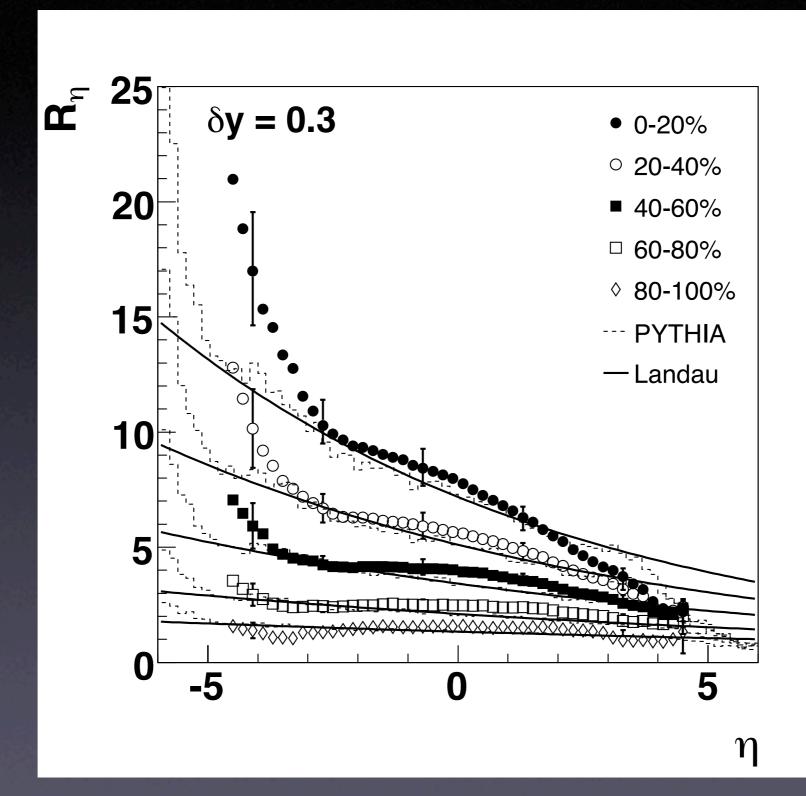
$$R_{\eta} = \frac{e^{-(y-\Delta y)^{2}/2L}}{e^{-y^{2}/2L}} \propto e^{-y\Delta y/L}$$

(for simplicity, assume $y=\eta$)

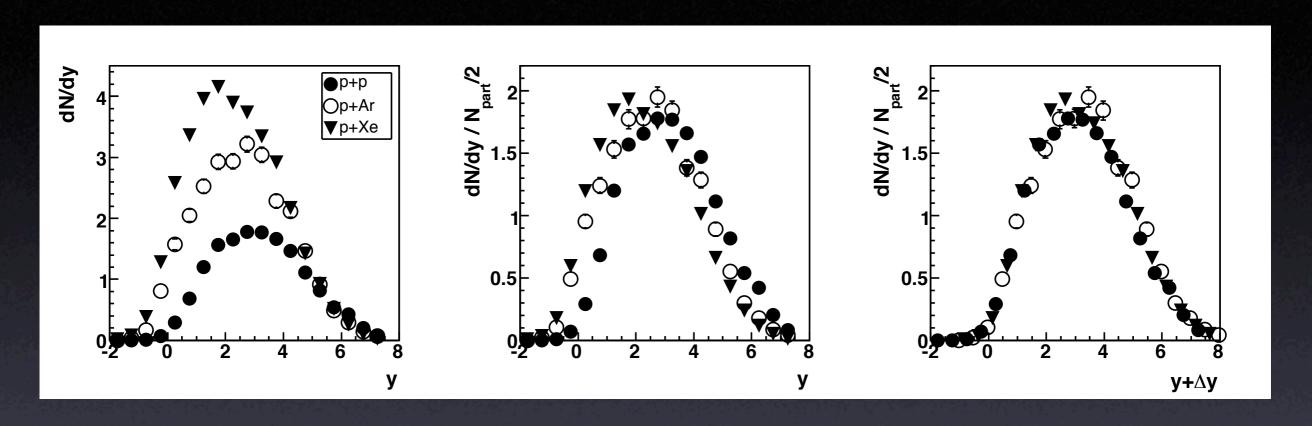
Comparisons to p+p



Comparisons to p+p

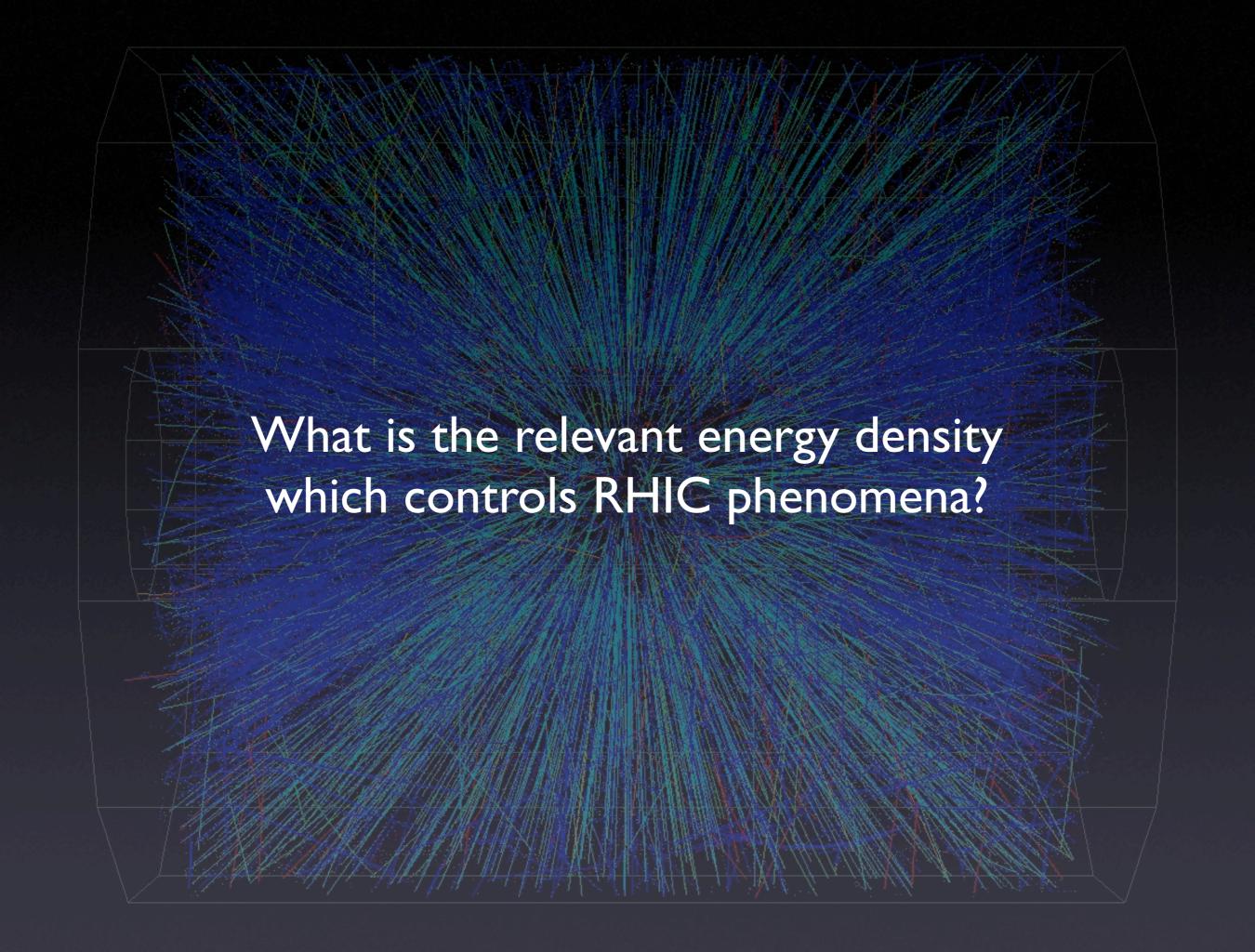


Lower Energy Data

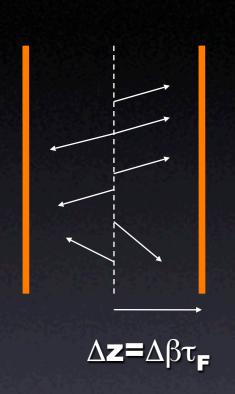


NA5 (1984) measured rapidity distributions in p+A collisions (p,Ar, Xe)

By dividing by $N_{part}/2$ and shifting by Δy , one can make the distributions overlap



Bjorken Density



$$N = \frac{dN}{d\beta_L} \Delta \beta_L = \frac{dN}{dy} \frac{\Delta z}{\tau_F}$$

$$\varepsilon = \frac{E}{V} = \frac{N\langle E \rangle}{\Delta z \times A} = \frac{dN}{dy} \frac{\Delta z}{\tau_F} \frac{\langle m_T \rangle}{\Delta z \times A}$$

$$= \frac{dN}{dy} \frac{\langle m_T \rangle}{A\tau_F} = \frac{dN}{dy} \frac{\langle m_T \rangle}{\pi R^2 \tau_F}$$

At low velocity $y\sim \beta$

Only particles with β <z/t_F will be inside volume with half-length z

A very standard estimation of energy density in A+A collisions

Bjorken Estimates

p+p collisions
$$\epsilon_{pp} = \frac{dN}{dy} \frac{\langle m_T \rangle}{\pi R^2 \tau_F} \sim 0.4 \frac{GeV}{fm^3} \label{epsilons} \begin{array}{l} \langle m_{\rm T} \rangle = 0.4 \ {\rm GeV} \\ \tau = 1 \ {\rm fm/c} \\ {\rm R=0.9fm} \\ {\rm dN/dy} \sim 2.5 \end{array}$$

A+A collisions
$$\epsilon_{AA} = A \frac{dN}{dy} \frac{\langle m_T \rangle}{1.2 A^{2/3} \pi R^2 \tau_F} = \frac{A^{1/3}}{1.2} \epsilon_{pp}$$

If p+p and A+A had <u>same</u> $dN/dy/(N_{part}/2)$ and $m_T>$, expect a 5-6x higher energy density by construction. Real parameters give a factor of > 10x.

If Cu+Cu and Au+Au collisions had same values, expect 50% difference in energy density!

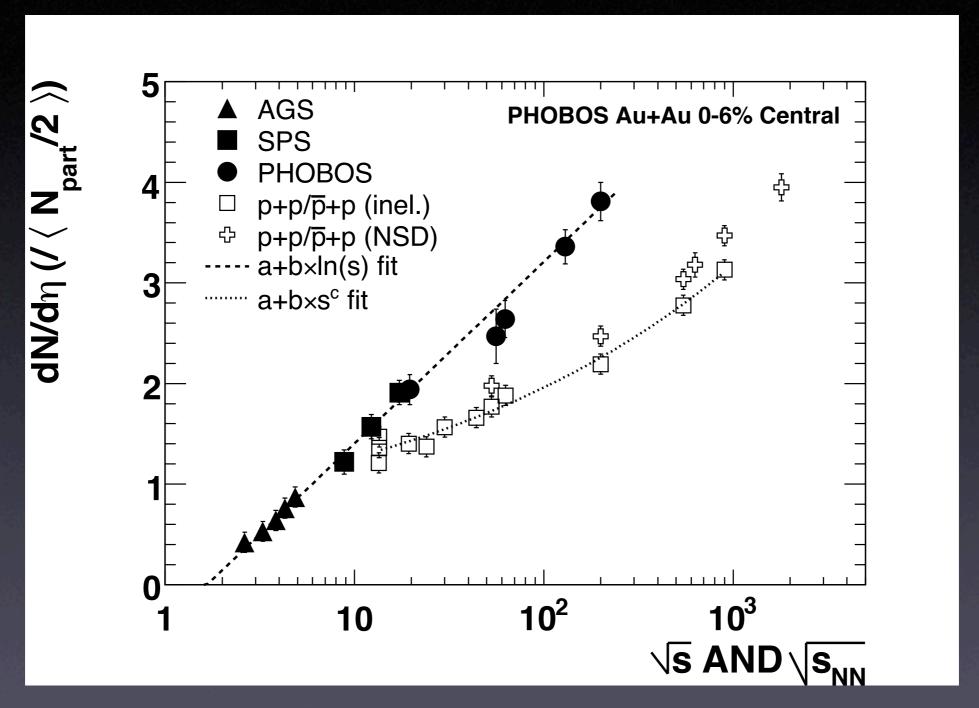
Landau/Fermi Density

p+p collisions
$$\epsilon_{pp}=rac{E}{V}=rac{\sqrt{s}}{V_0}\left(rac{\sqrt{s}}{2m}
ight)=rac{s}{2mV_0}$$

A+A collisions
$$\epsilon_{AA}=rac{E}{V}=rac{A\sqrt{s}}{AV_0}\left(rac{\sqrt{s}}{2m}
ight)=rac{s}{2mV_0}=\epsilon_{pp}$$

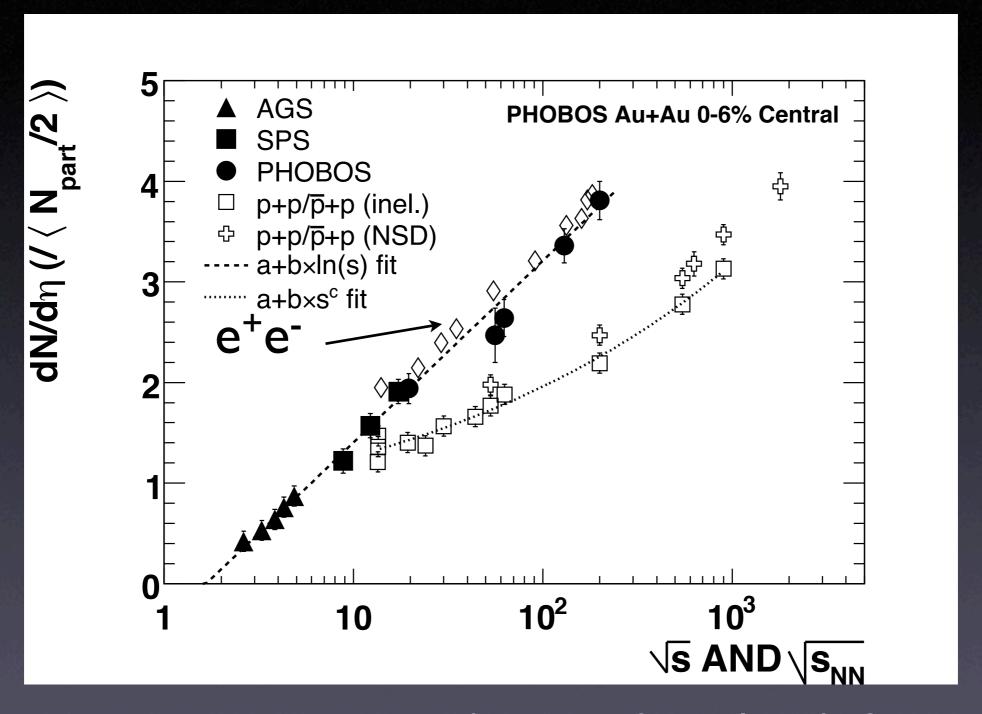
In Landau-Fermi model, no difference in energy density between Cu+Cu and Au+Au, and scales to same density in p+p (but real p+p at full overlap would be higher)

Energy Density?



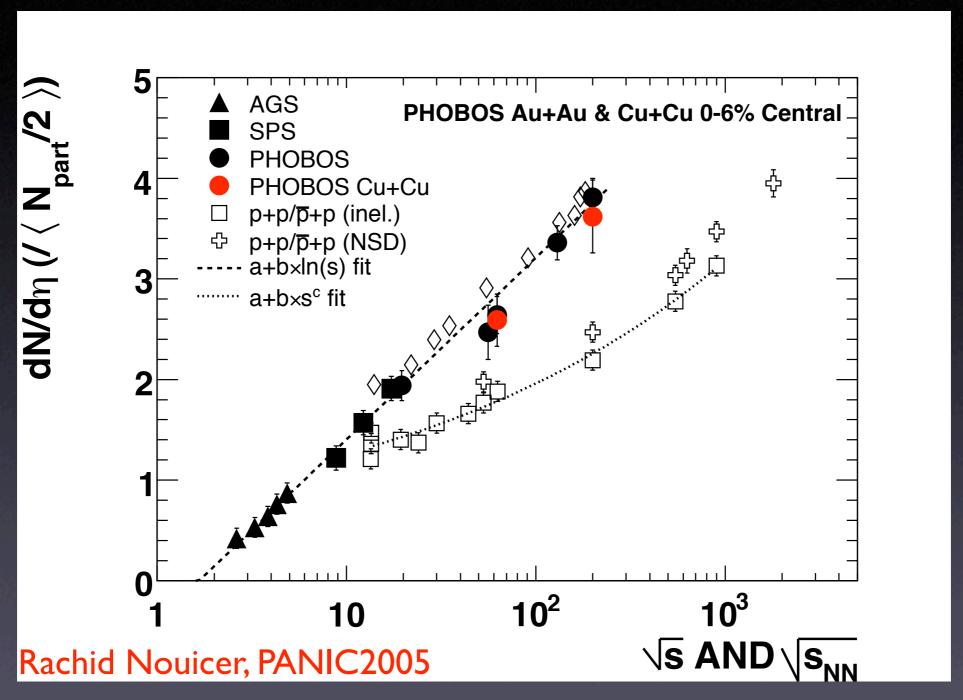
Consider this plot as a diagnostic for energy density

Energy Density?



e+e- multiplicities (peak of dN/dy_T) fit a similar trend

Energy Density?



Cu+Cu ~ Au+Au ~ e⁺e⁻

Should we get different ϵ from the same particle density?

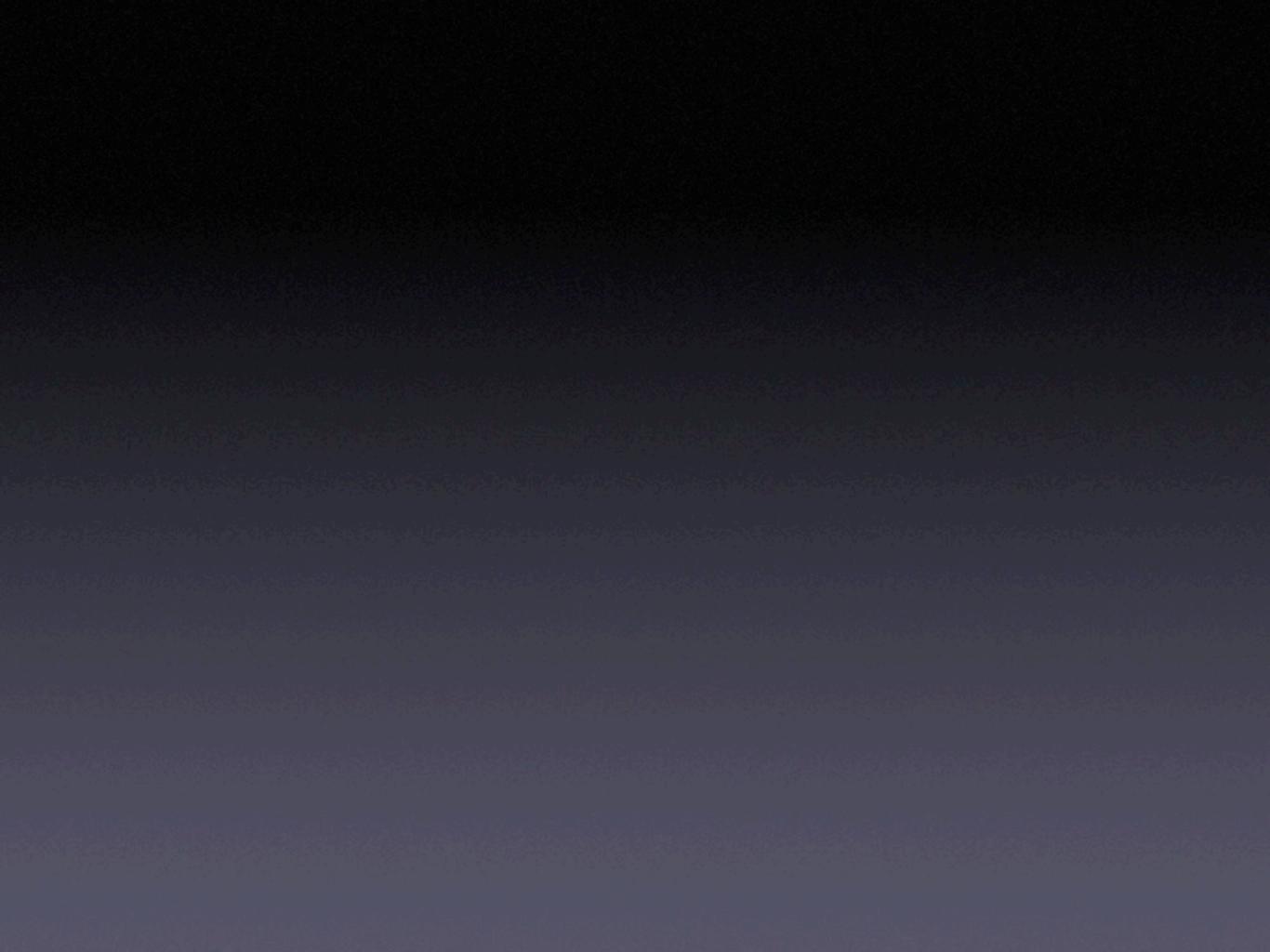
Conclusions

Various features of A+A, d+Au, p+p AND e+emay well be understood by an extremely rapid local thermalization

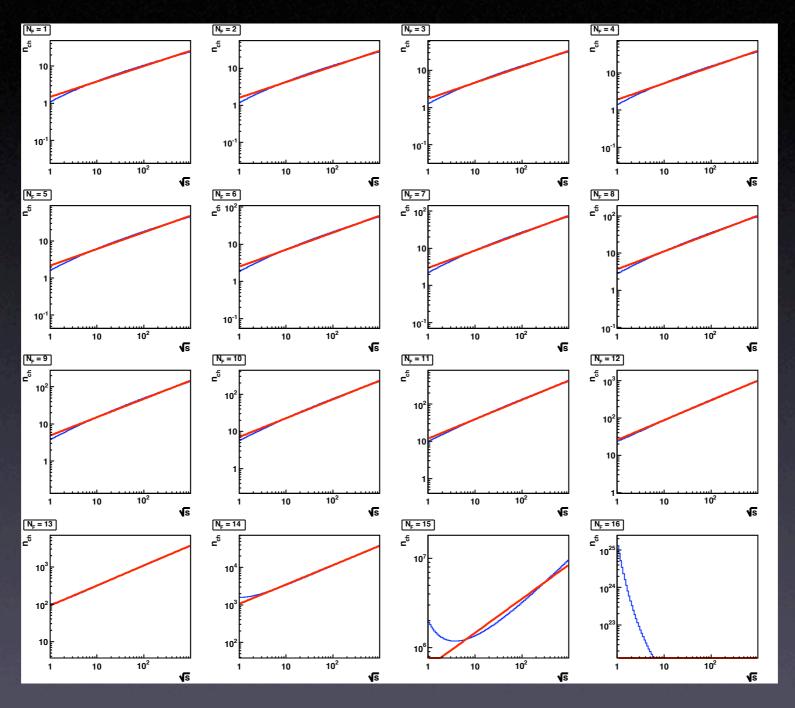
Entropy production
Longitudinal Flow
Transverse Flow

Even pQCD "looks & acts" like Landau hydro

How will we understand this at a fundamental level?

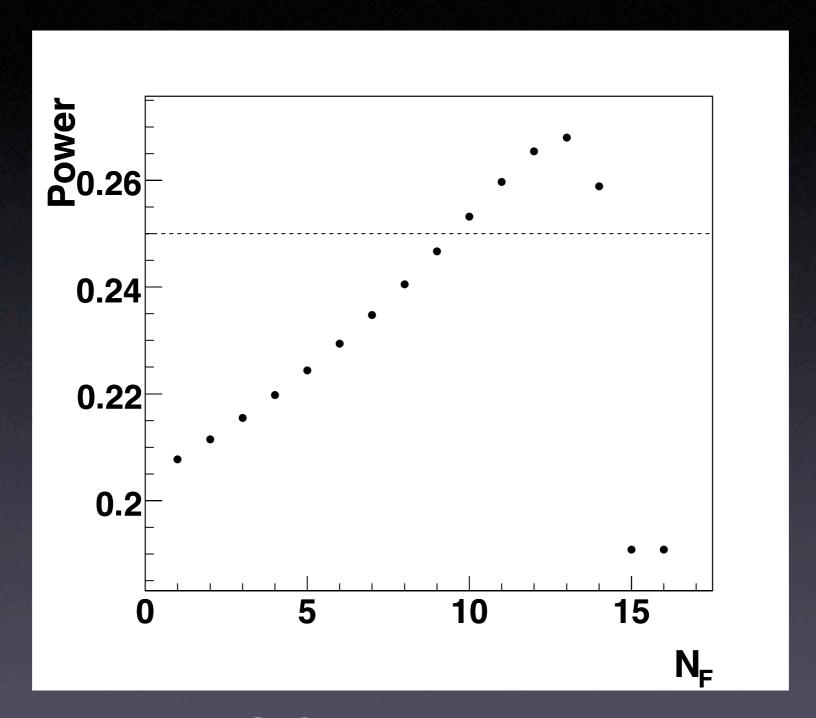


pQCD vs. Power Law vs. N_F



QCD formula approaches powerlaw as one changes N_F, the number of active fermions

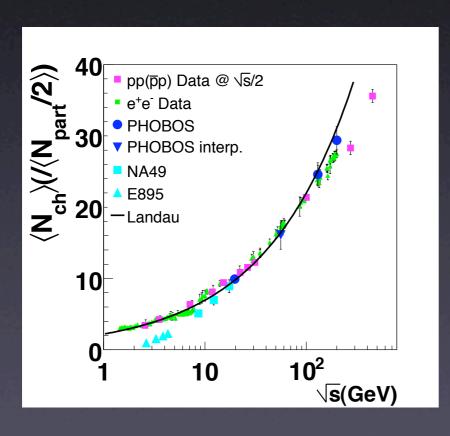
Power Law vs. NF

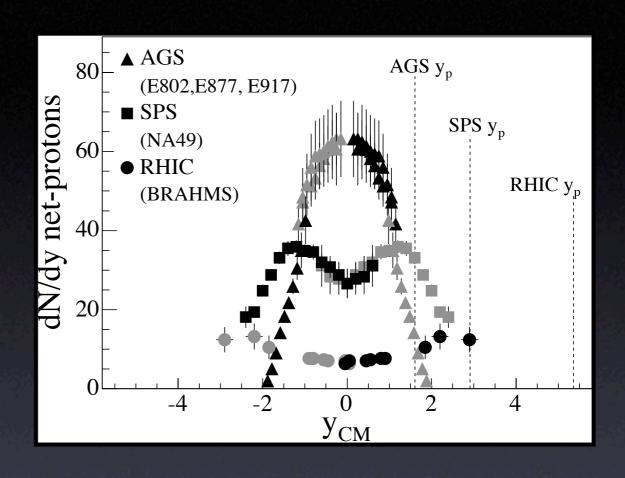


Interestingly, pQCD approaches and exceeds Landau-Fermi power law exponent!

A Contradiction?

Baryons do not seem to pile up at mid-rapidity as the energy gets higher

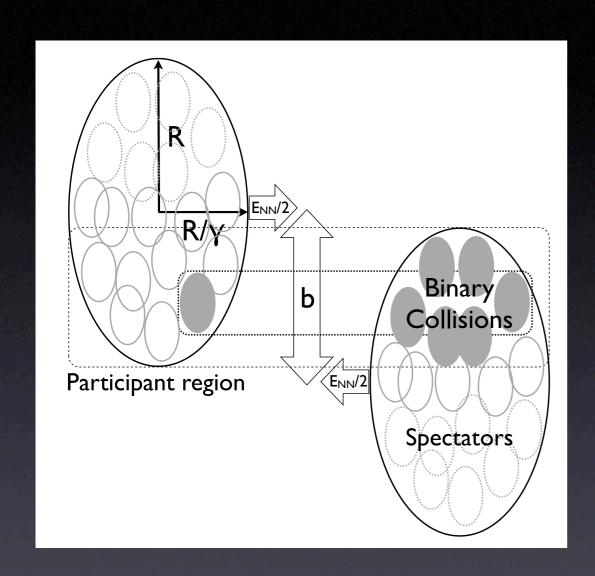


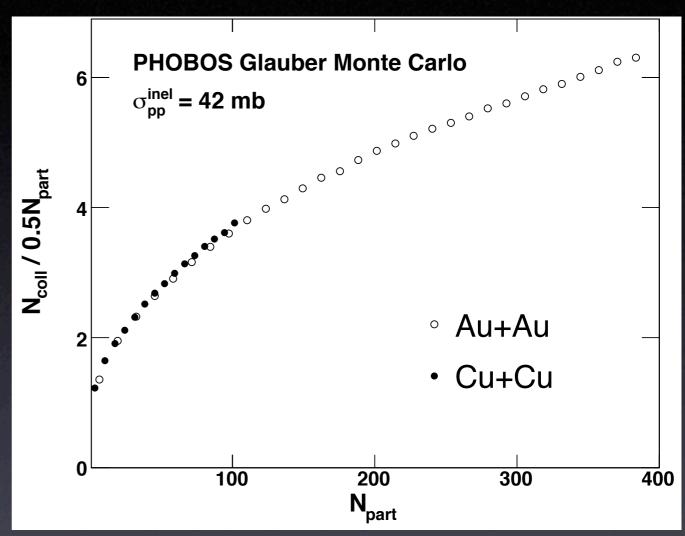


e+e- systematics suggest that the leading particle effect is gone (perhaps completely)

How could the leading particles lose all their energy, but not be "stopped"?

A Resolution?





Single collisions deposit <u>1/2</u> the energy
The rest of the energy must be deposited in
subsequent collisions of each nucleon

A Resolution?

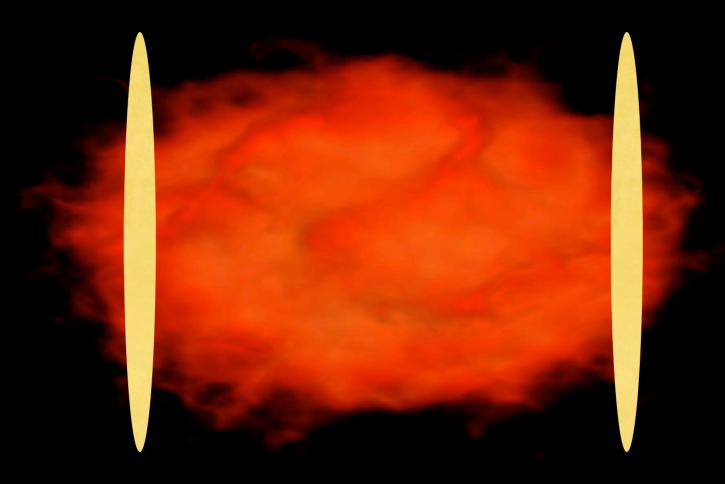


Maybe baryons stop in two "clumps" displaced from Z=0

Huge energy density pushes outward

Would accelerate baryons to large rapidities!

A Resolution?



Maybe baryons stop in two "clumps" displaced from Z=0

Huge energy density pushes outward

Would accelerate baryons to large rapidities!

"Leading Particles" in e+e-

SLAC-PUB-8160 June 1999

A STUDY OF CORRELATIONS BETWEEN IDENTIFIED CHARGED HADRONS IN HADRONIC Z^0 DECAYS*

The SLD Collaboration**

Stanford Linear Accelerator Center Stanford University, Stanford, CA 94309

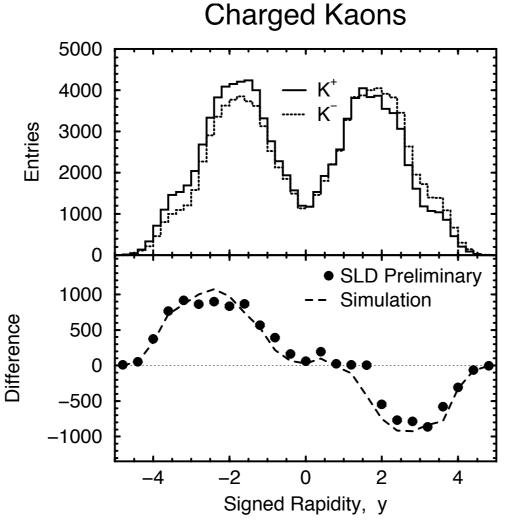


Figure 7: Distributions (top) of the rapidity with respect to the signed thrust axis for positively (histogram) and negatively (dashed histograms) charged kaons. The difference (bottom) between these two distributions compared with the prediction of the Monte Carlo simulation.